AOS-W 6.5.4.7

Release Notes

Copyright Information

Alcatel-Lucent and the Alcatel-Lucent Enterprise logo are trademarks of Alcatel-Lucent. To view other trademarks used by affiliated companies of ALE Holding, visit:

https://www.al-enterprise.com/en/legal/trademarks-copyright

All other trademarks are the property of their respective owners. The information presented is subject to change without notice. Neither ALE Holding nor any of its affiliates assumes any responsibility for inaccuracies contained herein. (2018)

Open Source Code

This product includes code licensed under the GNU General Public License, the GNU Lesser General Public License, and/or certain other open source licenses.

Contents	
Revision History	
Release Overview	6
Chapter Overview	
Supported Browsers	6
Contacting Support	
New Features	
Regulatory Updates	11
Resolved Issues	
Known Issues	
Upgrade Procedure	
Upgrade Caveats	
GRE Tunnel-Type Requirements	
Important Points to Remember and Best Practices	
Memory Requirements	
Backing up Critical Data	
Upgrading in a Multiswitch Network	
Installing the FIPS Version of AOS-W 6.5.4.7	
Upgrading to AOS-W 6.5.4.7	
Downgrading	

Before You Call Technical Support	
Glossary of Terms	

Revision History

The following table provides the revision history of this document.

Table 1: Revision History

Revision	Change Description
Revision 02	Removed description of known issue 159774.
Revision 01	Initial release.

AOS-W 6.5.4.7 is a software release that includes new features and enhancements introduced in this release, fixes to issues identified in previous releases as well as the known and outstanding issues in this release.

See the Upgrade Procedure on page 26 for instructions on how to upgrade your switch to this release.

Chapter Overview

- <u>New Features</u> provides a description of features and enhancements introduced in this release.
- <u>Regulatory Updates</u> describes the regulatory updates in this release.
- <u>Resolved Issues</u> describes the issues resolved in this release.
- <u>Known Issues</u> describes the known and outstanding issues identified in this release.
- <u>Upgrade Procedure</u> describes the procedures for upgrading a switch to this release.
- <u>Glossary of Terms</u> lists the acronyms and abbreviations used in the document.

For information regarding prior releases, refer to the corresponding Release Notes on https://support.esd.alcatel-lucent.com/.

Supported Browsers

The following browsers are officially supported for use with AOS-W 6.5.4.7 WebUI:

- Microsoft Internet Explorer 10.x and 11 on Windows 7 and Windows 8
- Mozilla Firefox 23 or later on Windows Vista, Windows 7, and Mac OS
- Apple Safari 5.1.7 or later on Mac OS
- Chrome 51.0.2704.103 m (64-bit)
- Microsoft Edge 25.10586.0.0 and Microsoft Edge HTML 13.10586

Contacting Support

 Table 2: Contact Information

Contact Center Online			
Main Site <u>http://enterprise.alcatel-lucent.com</u>			
Support Site	https://support.esd.alcatel-lucent.com		
Email ebg_global_supportcenter@al-enterprise.com			
Service & Support Contact C	Center Telephone		
North America	1-800-995-2696		
Latin America	1-877-919-9526		
EMEA	+800 00200100 (Toll Free) or +1(650)385-2193		
Asia Pacific	+65 6240 8484		
Worldwide	1-818-878-4507		

This chapter describes the new features and/or enhancements introduced in AOS-W 6.5.4.7. For more information about these features, refer to the AOS-W 6.5.4.x User Guide.

AP-Platform

Support for Loop Protection

Starting from AOS-W 6.5.4.7, the loop protect feature detects and avoids the formation of loops on the Ethernet ports of a Campus AP, Remote AP, or Mesh AP. The loop protect feature can be enabled on all APs that have multiple Ethernet ports and it supports tunnel, split-tunnel, and bridge modes.

The loop protection feature prevents the formation of loops when:

- An unmanaged switch is connected to one port of an AP and a loop forms in the unmanaged switch.
- The WAN port (port 0) and either of ports 1, 2, 3, or 4, if it exists, in an AP are connected to the same switch.
- Multiple ports in an AP are connected to an unmanaged switch.

The loop protection feature transmits a proprietary loop detection packet on one Ethernet port of an AP at the configured loop-protect interval (default value is 2 seconds). The loop protect feature transmits the loop detection packet without a VLAN tag irrespective of whether the Ethernet port of the AP is connected in access mode or trunk mode. That is, for trunk mode, loop protect is supported only in the native VLAN.

The Ethernet port of the AP that is shut down because of loop protection is marked with status **Loop-ERR**. A user can either the recover the shut down port from the managed device with manual intervention or enable automatic recovery mode and configure a automatic recovery interval. At the expiry of the automatic recovery interval, the **Loop-ERR** status of the Ethernet port is cleared and the Ethernet port is re-enabled automatically.

To prevent the downstream switch from dropping the loop detection packet, for example during broadcast storm state, if the AP takes longer time, or if the AP fails to detect a loop, a broadcast storm-control mechanism is provided as part of the loop protection feature. During broadcast-storm control, an AP counts the broadcast packets received on each of its Ethernet port and determines the packet rate in an interval. If the broadcast packet rate on one Ethernet port exceeds the configured threshold (default value is 2000 packets per second), the Ethernet port is shut down.

Configuring Loop Protect in the WebUI

To configure the loop protect feature through the WebUI:

- 1. Navigate to the **Configuration > WIRELESS > AP Configuration** page.
- 2. Select an AP group profile
- 3. In the selected AP group profile, navigate to **AP > Ethernet interface 1 port configuration** page.
- 4. Configure the loop protect parameters listed in the following table:

Table 3: Loop Protect Parameters in AP Wired Port Profile

Parameter	Description
Loop Protect Enable:	Enables loop protection on AP wired ports.
Loop Detection Interval:	Time, in seconds, to send loop detection packet. The supported range is 1 to 10 seconds and the default value is 2 seconds.
Storm Control Broadcast:	Enables storm control broadcast. If the number of broadcast packets per second on one port in the AP exceeds the configured threshold, the port is shutdown.
Storm Control Broadcast Threshold:	Storm control broadcast threshold in packets per second after which the port is shutdown. The default value is 2000 packets per second.
Auto Recovery Enable:	Enables automatic recovery of the port in the AP. After the automatic recovery, if the loop re-occurs, then the port is shutdown again.
Auto Recovery Interval:	Time, in seconds, to automatically recover the port in the AP. The supported range is 30 to 43200 seconds and the default value is 300 seconds.

Configuring Loop Protect in the CLI

To configure the loop protect feature through the CLI:

(host)	(config) #ap wired-port-profile <profile></profile>
(host)	(AP wired port profile " <profile>")#loop-protect-enable</profile>
(host)	(AP wired port profile " <profile>") #loop-detection-interval <loop-detectioninterval></loop-detectioninterval></profile>
(host)	(AP wired port profile " <profile>")#auto-recovery-enable</profile>
(host)	(AP wired port profile " <profile>")#auto-recovery-interval <auto-recoveryinterval></auto-recoveryinterval></profile>
(host)	(AP wired port profile " <profile>")#storm-control-broadcast</profile>
(host)	(AP wired port profile " <profile>")#storm-control-broadcast-threshold</profile>

To view the status of the loop protect parameters through the CLI:

(host) #show ap wired-port-profile <profile>
AP wired port profile "<profile>"

Loop Protect Enable	Disabled
Loop Detection Interval	2
Storm Control Broadcast	Disabled
Storm Control Broadcast Threshold	2000
Auto Recovery Enable	Disabled
Auto Recovery Interval	300

To manually recover a port of an AP in loop error state through the CLI:

(host) (config) #clear ap port ap-name <ap-name> <port>

AP Wizard

Support for AP-ANT-45

Starting from AOS-W 6.5.4.7, **AP-ANT-45** is supported under the **AP Settings > Specify AP Settings > External Type** section in the AP wizard.

DHCP

Support for AP Group in DHCP Option-82 File

Starting from AOS-W 6.5.4.7, the DHCP option-82 XML file supports AP group through the **apgrp** field. Use the **apgrp** field to insert AP group information into relay packets.

Example

WebUI

Support for Trusted VLANs in Branch Switch

Starting from AOS-W 6.5.4.7, you can add trusted or untrusted VLANs in a Branch Switch. Use the **Trusted VLANs** parameter under the **Port** or **Port-Channel** table in the **Configuration > Branch > Smart Config > Networking** page of the WebUI to add trusted or untrusted VLANs in a Branch Switch.

This chapter describes the regulatory updates in AOS-W 6.5.4.7.

Periodic regulatory changes may require modifications to the list of channels supported by an AP. For a complete list of channels supported by an AP using a specific country domain, access the switch Command Line Interface (CLI) and execute the **show ap allowed-channels country-code <country-code> ap-type <ap-model>** command.

The following default Downloadable Regulatory Table (DRT) version is part of AOS-W 6.5.4.7:

DRT-1.0_64331

For a complete list of countries and the regulatory domains in which the APs are certified for operation, refer to the Downloadable Regulatory Table or the DRT Release Notes at <u>support.esd.alcatel-lucent.com</u>.

NOTE

This software release supports the channel requirements described in *ALE Support Advisory SA-N0033*, available for download from the support.esd.alcatellucent.com site. This chapter describes the issues resolved in AOS-W 6.5.4.7.

Bug ID	Description	Component	Platform	Reported Version	Resolved in Version
103312	Symptom: The WebUI that used certificate authentication returned an invalid value for a session cookie. This issue is resolved by setting an empty value for the session cookie when it is created. Scenario: This issue was observed in switches running AOS-W 6.3.1.7 or later versions.	Web Server	All platforms	AOS-W 6.3.1.7	AOS-W 6.5.4.7
142980 174557 177794	Symptom: A switch leaked memory. The fix ensures that the switch does not leak memory and works as expected. Scenario: This issue occurred when AirGroup location policy and roaming were enabled in a switch. This issue was observed in switches running AOS-W 6.5.3.4 or later versions.	AirGroup	All plaforms	AOS-W 6.5.3.4	AOS-W 6.5.4.7
143057 177288	 Symptom: The values displayed for the following parameters in the output of the corresponding commands were inaccurate: Channel Busy of show ap debug radio-stats command Utilization(%) of show ap spectrum channel-metrics command Enhancements to the wireless driver resolved this issue. Scenario: This issue was observed in OAW-AP205H, OAW-AP210 Series, OAW-AP220 Series, and OAW-AP277 access points running AOS-W 6.5.1.0 or later versions. 	AP-Wireless	OAW-AP205H, OAW-AP210 Series, OAW- AP220 Series, and OAW- AP277 access points	AOS-W 6.5.1.0	AOS-W 6.5.4.7
156406	Symptom: A client, which connected to an AP in bridge mode, did not obtain an IP address. The fix ensures that the client obtains an IP address Scenario: This issue was observed in switches running AOS-W 6.5.0.3.	Management Authentication and User Rights	All platforms	AOS-W 6.5.0.3	AOS-W 6.5.4.7

Bug ID	Description	Component	Platform	Reported Version	Resolved in Version
156878	Symptom: Enabling WMS offload on a switch through OV3600 did not enable Mobility Manager. The fix ensures that Mobility Manager is enabled when enabling WMS offload on a switch. Scenario: This issue occurs when the snmp-server source controller-ip command was executed in the switch. This issue is not limited to any specific switch model or AOS-W release version.	SNMP	All platforms	AOS-W 6.4.2.0	AOS-W 6.5.4.7
161383 173552 173575 176409 177877 178323 178595 179019	 Symptom: An AP crashed and rebooted unexpectedly. The log file listed the reason for the event as Kernel panic - not syncing: Rebooting the AP because of FW HANG. Enhancements to the wireless driver resolved this issue. Scenario: This issue was observed in OAW-AP305, OAW-AP315, and OAW-AP320 Series access points running AOS-W 6.5.0.4 or later versions. 	AP-Wireless	OAW-AP305, OAW-AP315, and OAW- AP320 Series access points	AOS-W 6.5.0.4	AOS-W 6.5.4.7
164073	Symptom: A switch reported a stationary client as roaming and sent SNMP traps. The fix ensures that the switch reports only roaming clients and sends corresponding SNMP traps. Scenario: This issue was observed in switches running AOS-W 6.5.1.5 or later versions.	UCC	All platforms	AOS-W 6.5.1.5	AOS-W 6.5.4.7
164476 177025	Symptom: The output of the show datapath session dpi command indicated that the non-FTP sessions were incorrectly classified as FTP sessions. The fix ensures that the non-FTP sessions are correctly classified and displayed in the output of the show datapath session dpi command. Scenario: This issue occurred when DPI was enabled on switches running AOS-W 6.4.4.14 or later versions.	DPI	All platforms	AOS-W 6.4.4.14	AOS-W 6.5.4.7
166272 173020	Symptom: A client was unable to connect to the virtual IPs through Hot Standby Router Protocol (HSRP) or Gateway Load Balancing Protocol (GLBP). The fix ensures that a client is able to connect to the virtual IPs. Scenario: This issue occurred when clients used the L2 GRE tunnel to connect to the virtual IPs and BCMC was enabled on the VLAN. This issue was observed in switches running AOS-W 6.5.3.3 or later versions.	Routing	All platforms	AOS-W 6.5.3.3	AOS-W 6.5.4.7

Bug ID	Description	Component	Platform	Reported Version	Resolved in Version
166596	 Symptom: A client that was connected to an AP was continuously in sleep mode. As a result, the clients lost data connectivity for a few seconds before recovering automatically. Enhancements to the wireless driver resolved this issue. Scenario: This issue occurred when the AP lost synchronization with the client in the power save state. This issue was observed in OAW-AP215 access points running AOS-W 6.5.4.0 or later versions. 	AP-Wireless	OAW-AP215 access points	AOS-W 6.5.4.0	AOS-W 6.5.4.7
168322 168410	 Symptom: An AP crashed and rebooted unexpectedly. The log file listed the reason for the event as Kernel panic - not syncing: rcu_sched detected stalls by cpu: 1, count: 2. Enhancements to the wireless driver resolved this issue. Scenario: This issue was observed in OAW-AP303H. OAW-AP304, and OAW-AP305 access points running AOS-W 6.5.4.0 or later versions. 	AP-Wireless	OAW-AP303H, OAW-AP304, and OAW- AP305 access points	AOS-W 6.5.4.0	AOS-W 6.5.4.7
168636	Symptom: A client was unable to connect to a switch from Alcatel-Lucent Central using SSH. The fix ensures that the client is able to connect to a switch from Alcatel-Lucent Central using SSH. Scenario: This issue was observed in OAW-4005 switches running AOS-W 6.5.1.0.	Alcatel-Lucent Central	OAW-4005 switches	AOS-W 6.5.1.0	AOS-W 6.5.4.7
168888	Symptom: An AP detected false radar events. The fix ensures that the AP does not detect false radar events. Scenario: This issue occurred when DFS was enabled in an AP. This issue was observed in access points running AOS-W 6.5.1.8 or later versions.	AP-Wireless	All platforms	AOS-W 6.5.1.8	AOS-W 6.5.4.7
168984 170072 173647 174375 174998	Symptom: A switch failed to update the syslog server. This issue is resolved by enhancing the logging mechanism. Scenario: This issue occurred because the syslog file size increased due to excess and incorrect logging from the switch. This issue was observed in switches running AOS-W 6.5.2.1 or later versions.	Switch- Platform	All platforms	AOS-W 6.5.2.1	AOS-W 6.5.4.7

Bug ID	Description	Component	Platform	Reported Version	Resolved in Version
169184	 Symptom: A switch did not send SYN packets for IPv6 VLANs in decrypt decrypt-tunnel and tunnel forwarding mode for the following ports: SMTP ports 25 and 587 Jabber port 5222 SMB ports 445, 139, and so on The fix ensures that the switch sends the SYN packets for IPv6 VLANs in decrypt decrypt-tunnel and tunnel forwarding mode. Scenario: This issue was observed in switches running AOS-W 6.5.1.4. 	Switch- Datapath	All platforms	AOS-W 6.5.1.4	AOS-W 6.5.4.7
170903 174289	Symptom: APs did not broadcast SSIDs. The fix ensures that the AP broadcasts the SSIDs. Scenario: This issue occurred because the SSIDs were lost whenever a broken mesh link was re-established. This issue was observed in OAW-AP274 and OAW-AP275 access points running AOS-W 6.5.3.3 or later versions.	Mesh	OAW-AP274 and OAW- AP275 access points	AOS-W 6.5.3.3	AOS-W 6.5.4.7
171113	 Symptom: Bandwidth contracts in the target role were not applied to a split tunnel user. The fix ensures that the bandwidth contracts in the target role are applied to a split tunnel user. Scenario: This issue occurred when a user used COA to change the role of a split tunnel user. This issue was not limited to any specific access point model or ArubaOS version. 	AP Datapath	All platforms	AOS-W 6.5.4.3	AOS-W 6.5.4.7
171353	Symptom: The red LED in an AP was illuminated and the AP was in an unresponsive state. Enhancements to the wireless driver resolved this issue. Scenario: This issue occurred when POE was toggled for the AP or the port of the switch to which the AP was connected was swapped to another port. This issue was observed in OAW-AP303H, OAW-AP305, and OAW-AP365 access points running AOS-W 6.5.4.0 or later versions.	AP-Platform	OAW-AP303H, OAW-AP305, and OAW- AP365 access points	AOS-W 6.5.4.0	AOS-W 6.5.4.7
171379 177221	Symptom: Multiple core dumps were observed in an AP. The fix ensures that the AP does not process packets with invalid length. Scenario: This issue occurred when the wireless driver sent packets with invalid length to the AP. This issue was observed in OAW-AP325 access points running AOS-W 6.5.3.3 or later versions.	Air Management - IDS	OAW-AP325 access points	AOS-W 6.5.3.3	AOS-W 6.5.4.7

Bug ID	Description	Component	Platform	Reported Version	Resolved in Version
171353	Symptom: The red LED in an AP was illuminated and the AP was in an unresponsive state. Enhancements to the wireless driver resolved this issue. Scenario: This issue occurred when POE was toggled for the AP or the port of the switch to which the AP was connected was swapped to another port. This issue was observed in OAW-AP303H, OAW-AP305, and OAW-AP365 access points running AOS-W 6.5.4.0 or later versions.	AP-Platform	OAW-AP303H, OAW-AP305, and OAW- AP365 access points	AOS-W 6.5.4.0	AOS-W 6.5.4.7
171434	 Symptom: VLAN IDs were missing from a VLAN pool after a switch was reloaded. The fix ensures that the VLAN IDs are retained after a switch is reloaded. Scenario: This issue occurred when the string length of the VLAN range exceeded the maximum limit of 256 characters. This issue was limited to any specific switch model or AOS-W release version. 	VLAN	All platforms	AOS-W 6.5.3.3	AOS-W 6.5.4.7
171587	 Symptom: A switch falsely detected a FATA-jack attack and raised an IDS event for clients that used 802.11r and initiated a reassociation request. This issue is resolved by checking for authentication algorithm values greater than three. Scenario: This issue was observed when 802.11r (Fast BSS Roaming) was enabled and supported clients roamed using WPA authentication algorithm 2. This issue was observed in switches running AOS-W 6.4.4.16 or later versions. 	Air Management - IDS	All platforms	AOS-W 6.5.4.0	AOS-W 6.5.4.7
171896	 Symptom: APs that terminated on a switch in an HA topology came up with dirty configuration state (as indicated by ID flag). The fix ensures that the APs do not come up with dirty configuration. Scenario: This issue occurred under the following conditions: HA over subscription was enabled on the switch. CPsec was enabled on the switch. The count of APs terminating on the standby switch exceeded twice the supported platform limit. This issue was observed in access points running AOS-W 6.5.1.9 or later versions. 	AP Datapath	All platforms	AOS-W 6.5.1.9	AOS-W 6.5.4.7

Bug ID	Description	Component	Platform	Reported Version	Resolved in Version
171931	 Symptom: Some APs reported a high packet rate value for the uplink traffic in the AMON message. Enhancements to the wireless driver resolved this issue. Scenario: This issue occurred because of inconsistent handling of NULL frames in the Rx data statistics. This issue was observed in OAW-AP300 Series, OAW-AP303H, OAW-AP310 Series, OAW-AP320 Series, OAW-AP306 Series access points running ArubaOS 6.5.1.8 or later versions. 	AP-Wireless	OAW-AP300 Series, OAW- AP303H, OAW-AP310 Series, OAW- AP320 Series, OAW-AP330 Series, and OAW-AP360 Series access	AOS-W 6.5.1.8	AOS-W 6.5.4.7
172390	Symptom: A branch switch lost the GRE tunnel destination IP address. The fix ensures that the GRE tunnel of the branch switch comes up after the IP address of the master switch is resolved. Scenario: This issue occurred when a branch switch, which was manually configured with the IP address of a master switch, was rebooted. The IP address of the master switch was mapped with a FQDN but failed to resolve during the branch switch reboot. This issue was observed in switches running AOS-W 6.5.3.3.	GRE	All platforms	AOS-W 6.5.3.3	AOS-W 6.5.4.7
172758	 Symptom: The AP image preload operation failed when executed from a switch. The fix ensures that the AP image preload operation works as expected. Scenario: This issue was observed in OAW-4750 switches running AOS-W 6.5.4.0 or later versions. 	Switch- Platform	OAW-4750 switches	AOS-W 6.5.4.0	AOS-W 6.5.4.7
173216	Symptom: Syslog messages sent from a switch were not compliant with the ArcSight CEF standards. Scenario: This issue occurred because a switch supported only a limited number of CEF formats. This issue was observed in OAW-4750 switches running AOS-W 6.5.3.3.	Logging	OAW-4750 switches	AOS-W 6.5.3.3	AOS-W 6.5.4.7

Bug ID	Description	Component	Platform	Reported Version	Resolved in Version
173838	Symptom: A user was not able to add a MAC address in the Configuration > WIRELESS > AP Installation > Whitelist > Remote AP page in the WebUI. The fix allows a user to add the MAC address in the Configuration > WIRELESS > AP Installation > Whitelist > Remote AP page of the WebUI. Scenario: This issue occurred when the AP name or description corresponding to the MAC address had a space character. This issue was observed in switches running AOS-W 6.5.4.3.	WebUI	All platforms	AOS-W 6.5.4.3	AOS-W 6.5.4.7
174336	Symptom: An AP rebooted unexpectedly. The log file listed the reason for the event as External watchdog reset and Kernel panic: Fatal exception . The fix ensures that the HPE switches can establish an IPsec connection with a switch. Enhancements to the wireless driver resolved this issue. Scenario: This issue was observed in OAW-AP207 access points running AOS-W 6.5.3.3 or later versions.	AP-Wireless	OAW-AP207 access points	AOS-W 6.5.3.3	AOS-W 6.5.4.7
174534	Symptom: HPE switches using the factory or TPM certificates were unable to establish an IPsec connection with a switch. The fix ensures that the HPE switches can establish an IPsec connection with a switch. Scenario: This issue occurred because the Certificate Policies extension OID of the HPE switch did not match with the preferred OIDs on the switches. This issue was observed in switches running AOS-W 6.5.4.3 or later versions.	IPsec	All platforms	AOS-W 6.5.4.3	AOS-W 6.5.4.7
174746	Symptom: Clients failed to receive RAs when the IPv6 proxy RA was enabled on a switch. The issue is resolved by prioritizing the RA traffic appropriately. Scenario: This issue occurred because the IPv6 router solicitation packets were discarded when the switch was overloaded with untrusted multicast traffic. This issue was observed in switches running AOS-W 6.5.3.3 or later versions.	IPv6	All platforms	AOS-W 6.5.3.3	AOS-W 6.5.4.7
174943	 Symptom: The Tx rate value was displayed incorrectly when the show ap debug radiostats command was executed. Enhancements to the wireless driver resolved this issue. Scenario: This issue was observed in OAW-AP300 Series, OAW-AP310 Series, OAW-AP320 Series, and OAW-AP330 Series access points running AOS-W 6.5.3.4 or later versions. 	AP-Wireless	OAW-AP300 Series, OAW- AP310 Series, OAW-AP320 Series, and OAW-AP330 Series access points	AOS-W 6.5.3.4	AOS-W 6.5.4.7

Bug ID	Description	Component	Platform	Reported Version	Resolved in Version
175087	 Symptom: An AP buffered packets for a long time and replies to the ping command was delayed. Enhancements to the wireless driver resolved this issue. Scenario: This issue was observed in OAW-AP207 access points running AOS-W 6.5.1.5 	AP-Wireless	OAW-AP207 access points	AOS-W 6.5.1.5	AOS-W 6.5.4.7
175268	Symptom: The output of the show ap debug client-table command displayed incorrect Tx-Retries. The fix ensures that the output of the show ap debug client-table command displays the accurate Tx-Retries. Scenario: This issue was observed in OAW-AP300 Series access points running AOS-W 6.5.3.4.	AP-Wireless	OAW-AP300 Series access points	AOS-W 6.5.3.4	AOS-W 6.5.4.7
175333	Symptom: A client was not able to send or receive traffic. The fix ensures that the client can send or receive traffic. Scenario: This issue was observed in OAW-AP325 access points running AOS-W 6.5.1.9.	AP-Wireless	OAW-AP325 access points	AOS-W 6.5.1.9	AOS-W 6.5.4.7
175475 175727	 Symptom: The mDNS process in a switch showed high memory utilization. This issue is resolved by sending ClearPass Policy Manager requests only for AirGroup users. Scenario: This issue occurred when AirGroup was disabled but a ClearPass Policy Manager request was sent for each authenticated user. This lead to a memory leak. This issue was observed in switches running AOS-W 6.5.4.2. 	AirGroup	All platforms	AOS-W 6.5.4.2	AOS-W 6.5.4.7
175741	Symptom: LLDP-MED did not get enabled on the ports E1 through E3 of an AP although the configuration was applied on all the ports. The fix ensures that LLDP-MED gets enabled on the ports E1 through E3. Scenario: This issue was observed in OAW-AP203R and OAW-AP203RP access points running AOS-W 6.5.4.3 or later versions.	AP Datapath	OAW-AP203R and OAW- AP203RP access points	AOS-W 6.5.4.3	AOS-W 6.5.4.7
176476	 Symptom: A switch rebooted unexpectedly. The log file listed the reason for the event as Datapath timeout (SOS Assert) (Intent:cause:register 54:86:50:2). The fix ensures that the switch works as expected. Scenario: This issue was observed in switches running AOS-W 6.5.3.4 or later versions in a master-local topology. 	IPsec	All platforms	AOS-W 6.5.3.4	AOS-W 6.5.4.7

This chapter describes the known and outstanding issues identified in AOS-W 6.5.4.7.

Bug ID	Description	Component	Platform	Reported Version
151748 151871 152748 152749 155683 156758 157826 170643 174326 174359 174361	 Symptom: An AP crashes and reboots unexpectedly. The log file lists the reason for the event as Reboot caused by kernel panic: softlockup: hung tasks. Scenario: This issue occurs when DMO is enabled. This issue is observed in access points running in AOS-W 6.5.1.5. Workaround: None. 	AP-Wireless	All platforms	AOS-W 6.5.1.5
154625 155709 155894 156383 158536 161789	Symptom: The VRRP state changes although heartbeats are not missed. Scenario: This issue occurs when a standby switch inadvertently transitions to master state because the master switch delays the processing of VRRP advertisements. This issue is observed in switches running AOS-W 6.5.0.3 in a local-master topology. Workaround: Disable debug logs and syslog server. Increase the advertisement interval.	Switch-Platform	All platforms	AOS-W 6.5.0.3
158149 176715	Symptom: The BLE scanning in an AP is slow and fewer BLE devices is reported. Scenario: This issue is observed in OAW-AP207 access points running AOS-W 6.5.2.0 or later versions. Workaround: None.	BLE	AP-207 access points	AOS-W 6.5.2.0
161655	Symptom: Some of the high-frequency radio statistics such as tx_time, rx_time, and rx_ clear are not collected correctly per beacon period on some APs. Scenario: This issue is observed in access points running AOS-W 6.5.2.0. Workaround: None.	AP-Platform	All platforms	AOS-W 6.5.2.0

Bug ID	Description	Component	Platform	Reported Version
166426 167050 170409	 Symptom: A master and standby switch reboot unexpectedly. The log file lists the reason for the event as Reboot Cause: Datapath timeout (SOS Assert) (Intent:cause:register 54:86:50:60). Scenario: This issue is observed in switches running AOS-W 6.5.1.9 in a master-standby topology. Workaround: None. 	Switch- Datapath	All platforms	AOS-W 6.5.1.9
167028	 Symptom: The SNMP walk reports AP port speed as greater than 1 Gbps on a 1 Gbps Ethernet Port. Scenario: This issue occurs when the STM process incorrectly calculates the Ethernet port speed. This issue is observed in access points running AOS-W 6.5.1.5 or later versions. Workaround: None. 	Air Management - IDS	All platforms	AOS-W 6.5.1.5
167198 177034	Symptom: An AP crashes and reboots unexpectedly. The log file lists the reason for the event as Kernel panic - not syncing: softlockup: hung tasks . Scenario: This issue is observed in OAW-AP303H access points running AOS-W 6.5.3.4. Workaround: None.	AP Datapath	OAW-AP303H access points	AOS-W 6.5.3.4
167550	 Symptom: A switch crashes and reboots unexpectedly. The log file lists the reason for the event as Reboot Cause: Datapath timeout (SOS Assert) (Intent:cause:register 54:86:50:2). Scenario: This issue is observed in switches running AOS-W 6.5.4.2. Workaround: None. Duplicates: 167957, 168626, 169681, 170922, 171101, 172951, 173031, 173338, 173414, 173443, 174062, 174068, 174472, 174613, 174798, 175219, 175480, 175502, 176206, 176793, 177432, 179043, 179301 	Switch- Datapath	All platforms	AOS-W 6.5.4.2
168290 172750	Symptom: The configured bandwidth contracts are not applied for some clients. Scenario: This issue occurs when user role derivation is delayed after a MAC authentication. This issue is observed in switches running AOS-W 6.5.3.0. Workaround: None.	Base OS Security	All platforms	AOS-W 6.5.3.0
168789	Symptom: An AP with a 802.1X supplicant configuration fails to boot. Scenario: This issue occurs when an ACL denies a DNS response from DNS server. This issue is observed in access points running AOS-W 6.5.4.0 or later versions. Workaround: None.	AP-Platform	All platforms	AOS-W 6.5.4.0

Bug ID	Description	Component	Platform	Reported Version
170037 170055	Symptom: An AP does not discover a master switch through ADP. Scenario: This issue occurs when a static IP address is configured in an AP and the ACL denies ADP packets. This issue is observed in access points running AOS-W 6.5.4.2. Workaround: None.	AP-Platform	All platforms	AOS-W 6.5.4.2
171103	 Symptom: A switch crashes and reboots unexpectedly. The log file lists the reason for the event as Reboot Cause: Datapath timeout (SOS Assert) (Intent:cause:register 54:86:50:2). Scenario: This issue is observed in switches running AOS-W 6.5.1.9. Workaround: None. 	Switch- Datapath	All platforms	AOS-W 6.5.1.9
171521 175748	Symptom: The Captive Portal page for a Linux client displays Authentication failed after a user enters the login credentials. Scenario: This issue occurs when a switch does not hijack DNS response. This issue is observed in switches running AOS-W 6.5.4.3. Workaround: None.	Switch- Datapath	All platforms	AOS-W 6.5.4.3
171726	Symptom: A switch crashes and reboots unexpectedly. The log lists the reason for the event as Datapath timeout (SOS Assert) (Intent: cause:register 54:86:50:2) . Scenario: This issue is observed in OAW-4650 switches running AOS-W 6.5.3.3. Workaround: None.	Switch- Datapath	OAW-4650 switches	AOS-W 6.5.3.3
172019 172464 175355	Symptom: A switch displays high CPU utilization. Scenario: This issue occurs when a switch processes Captive Portal requests for tunnel-mode clients. This issue is observed in switches running AOS-W 6.5.1.4. Workaround: None.	Web Server	All platforms	AOS-W 6.5.1.4
172506	 Symptom: A switch discards the first TCP SYN packet when a client connects to a FTP server. Scenario: This issue occurs in a switch when DPI is enabled. This issue is observed in switches running AOS-W 6.4.4.14. Workaround: None. 	Switch- Datapath	All platforms	AOS-W 6.4.4.14
172801 175444 176229	 Symptom: An AP crashes and reboots unexpectedly. The log file lists the reason for the event as Kernel panic: Fatal exception. Scenario: This issue is observed in OAW-AP225 access points running AOS-W 6.4.4.16 or later versions. Workaround: None. 	AP-Wireless	OAW-AP225 access points	AOS-W 6.4.4.16

Bug ID	Description	Component	Platform	Reported Version
172987	 Symptom: A switch crashes and reboots unexpectedly. The log file lists the reason for the event as Kernel panic: Fatal exception. Scenario: This issue is observed in OAW-4550 switches running AOS-W 6.5.3.3. Workaround: None. 	Switch- Datapath	OAW-4550 switches	AOS-W 6.5.3.3
173338	Symptom: A switch crashes and reboots unexpectedly. The log file lists the reason for the event as Datapath timeout (SOS Assert) (Intent:cause:register 54:86:50:2 . Scenario: This issue is observed in OAW-4750 switches running AOS-W 6.5.4.2. Workaround: None.	Switch- Datapath	OAW-4750 switches	AOS-W 6.5.4.2
173359	Symptom: A switch crashes and reboots unexpectedly. The log file lists the reason for the event as Datapath timeout (SOS Assert) (Intent:cause:register 54:86:50:2) . Scenario: This issue is observed in OAW-4750 switches running AOS-W 6.5.3.3. Workaround: None.	Switch- Datapath	OAW-4750 switches	AOS-W 6.5.3.3
173443	 Symptom: A switch crashes and reboots unexpectedly. The log file lists the reason for the event as Reboot Cause: Datapath timeout (SOS Assert). Scenario: This issue is observed in OAW-4450 switches running AOS-W 6.5.1.9. Workaround: None. 	Switch- Datapath	OAW-4450 switches	AOS-W 6.5.1.9
173465	 Symptom: A switch crashes and reboots unexpectedly. The log file lists the reason for the event as Reboot Cause: Datapath timeout (SOS Assert) (Intent:cause:register 54:86:50:2). Scenario: This issue is observed in OAW-4650 switches running AOS-W 6.5.4.3. Workaround: None. 	Switch- Datapath	OAW-4650 switches	AOS-W 6.5.4.3
173868	 Symptom: A user with the same static IP address fails to send or receive traffic when connected to an SSID. Scenario: This issue occurs when prohibit-ip-spoofing parameter is disabled in the firewall settings. This issue is observed in switches running AOS-W 6.5.3.3 or later versions. Workaround: None. 	Base OS Security	All platforms	AOS-W 6.5.3.3
173906	Symptom: The NTP authentication keys are not automatically deleted on a standby switch after they are deleted on the master switch. Scenario: This issue is observed in switches running AOS-W 6.5.3.3 or later versions. Workaround: None.	Switch-Platform	All platforms	AOS-W 6.5.3.3

Bug ID	Description	Component	Platform	Reported Version
174150	 Symptom: A switch crashes and reboots unexpectedly. The log file lists the reason for the event as Datapath crash. Scenario: This issue is observed in 7280 switches running AOS-W 6.5.4.2 or later versions. Workaround: None. 	Switch- Datapath	7280 switches	AOS-W 6.5.4.2
174337 178186	Symptom: IDS tarpit containment is inconsistent in access points. Scenario: This issue occurs when APs are configured in AM mode and the tarpit frames are sent out on the wrong channel. This issue is not limited to any specific access point model or AOS-W release version. Workaround: None.	Air Management - IDS	All platforms	AOS-W 6.5.4.4
174473	 Symptom: A switch crashes and reboots unexpectedly. The log file lists the reason for the event as Datapath crash. Scenario: This issue is observed in 7280 switches running AOS-W 6.5.4.0. Workaround: None. 	Switch- Datapath	7280 switches	AOS-W 6.5.4.0
174743	 Symptom: A switch crashes and reboots unexpectedly. The log file lists the reason for the event as Datapath crash. Scenario: This issue is observed in 7280 switches running AOS-W 6.5.4.0 or later versions. Workaround: None. 	Switch- Datapath	7280 switches	AOS-W 6.5.4.0
174823 175163	Symptom: The Authentication process in a switch crashes unexpectedly. Scenario: This issue occurs when the aaa test-server verbose command is executed. This issue is observed in switches running AOS-W 6.5.3.3 or later versions. Workaround: None.	Base OS Security	All platforms	AOS-W 6.5.3.3
174865	 Symptom: A client proceeds to 802.1X authentication although it fails MAC authentication. Scenario: This issue occurs when MAC authentication with L2 authentication fail-through is disabled. This issue is observed in switches running AOS-W 6.5.3.3 or later versions. Workaround: None. 	Base OS Security	All platforms	AOS-W 6.5.3.3

Bug ID	Description	Component	Platform	Reported Version
175061	Symptom: The system time of a switch is displayed incorrectly. Scenario: This issue occurs when the NTPD process in a switch used a local interface during boot time. The local interface did not have a route to the NTP server and hence the system time of the switch is not synchronized. This issue is observed in a switches running AOS-W 6.5.1.9 or later versions. Workaround: None.	Switch-Platform	All platforms	AOS-W 6.5.1.9
175493	 Symptom: A switch crashes and reboots unexpectedly. The log file lists the reason for the event as Reboot Cause: Datapath timeout (SOS Assert) (Intent:cause:register 54:86:50:2). Scenario: This issue is observed in a OAW-4750 switches running AOS-W 6.5.3.3 or later versions. Workaround: None. 	Switch- Datapath	OAW-4750 switches	AOS-W 6.5.3.3
175583	Symptom: An crashes and reboots unexpectedly. The log file does not list the reason for the event. Scenario: This issue is observed in a OAW-AP205 access points running AOS-W 6.5.4.3. Workaround: None.	AP-Wireless	OAW-AP205 access points	AOS-W 6.5.4.3
175852	Symptom: A switch displays the Save failed: Module Authentication is busy. Please try later error when the user attempts to save the configuration. Scenario: This issue is observed in switches running AOS-W 6.5.3.3 or later versions. Workaround: None.	Base OS Security	All platforms	AOS-W 6.5.3.3
176344	Symptom: A switch does not retain the cached ACR license. Scenario: This issue is observed in switches running AOS-W 6.5.3.3-FIPS. Workaround: None.	Licensing	All platforms	AOS-W 6.5.3.3- FIPS

This chapter details the software upgrade procedures. Alcatel-Lucent best practices recommend that you schedule a maintenance window for upgrading your switches.

Read all the information in this chapter before upgrading your switch.

Topics in this chapter include:

- Upgrade Caveats on page 26
- GRE Tunnel-Type Requirements on page 28
- Important Points to Remember and Best Practices on page 28
- Memory Requirements on page 29
- Backing up Critical Data on page 29
- Upgrading in a Multiswitch Network on page 31
- Installing the FIPS Version of AOS-W 6.5.4.7 on page 31
- Upgrading to AOS-W 6.5.4.7 on page 31
- Downgrading on page 35
- Before You Call Technical Support on page 37

Upgrade Caveats

- OAW-AP120 Series access points, OAW-4306 Series, OAW-4x04 Series, OAW-S3, and OAW-6000 switches are not supported in AOS-W 6.5.x. Do not
 upgrade to AOS-W 6.5.x if your deployment contains a mix of these switches in a master-local setup.
- If your switch is running AOS-W 6.4.0.0 or later versions, do not use a Windows-based TFTP server to copy the AOS-W image to the nonboot partition of the switch for upgrading or downgrading. Use FTP or SCP to copy the image.
- Starting from AOS-W 6.4.x, you cannot create redundant firewall rules in a single ACL. AOS-W will consider a rule redundant if the primary keys are the same. The primary key is made up of the following variables:
 - source IP or alias
 - destination IP or alias
 - proto-port or service

If you are upgrading from AOS-W 6.1 or earlier and your configuration contains an ACL with redundant firewall rules, upon upgrading, only the last rule will remain.

For example, in the following ACL, both ACE entries could not be configured in AOS-W 6.4.x. When the second ACE is added, it overwrites the first.

```
(host) (config) #ip access-list session allowall-laptop
(host) (config-sess-allowall-laptop) #any any permit time-range test range
(host) (config-sess-allowall-laptop) #any any deny
(host) (config-sess-allowall-laptop) #!
(host) (config) #end
(host) #show ip access-list allowall-laptop
ip access-list session allowall-laptop
allowall-laptop
_____
Priority
             Source Destination Service Action TimeRange
_____
             ----- ------
1
             any
                    any
                                  any
                                         deny
```

When upgrading the software in a multiswitch network (one that uses two or more Alcatel-Lucent switches), special care must be taken to upgrade all the switches in the network and to upgrade them in the proper sequence. (See <u>Upgrading in a Multiswitch Network on page 31</u>.)

Failure to Upgrade to AOS-W 6.5.0.0-FIPS

Customers upgrading from any FIPS version of AOS-W prior to AOS-W 6.5.0.0-FIPS to AOS-W 6.5.0.0-FIPS or later version may experience symptoms that indicate an upgrade failure. Symptoms may include the apparent loss of configuration, being unable to gain administrative access to the switch, and/or the hostname of the switch being set back to the default value.

This condition is caused by a change in the FIPS requirement for the strength of the hashing algorithm that is used to protect the configuration file from outside tampering. Starting from AOS-W 6.5.0.0-FIPS, all versions of AOS-W are changed to use the stronger hashing algorithm to meet FIPS requirements. This change is known to create a challenge when upgrading or downgrading a switch between AOS-W 6.4.0.0-FIPS version and AOS-W 6.5.0.0-FIPS version. In some instances the new stronger hash value may be missing or incorrect. This may cause the switch to not boot normally.

The most common scenario is when a switch has been booted with any version of AOS-W 6.5.0.0-FIPS or later version, is subsequently downgraded to any version of AOS-W 6.4.0.0-FIPS or prior versions, and then at any point in the future is upgraded back to any version AOS-W 6.5.0.0-FIPS or later version.

To restore service, Alcatel-Lucent recommends to roll back the AOS-W to the previous version. This can be accomplished by:

- 1. Connect an administrative terminal to the console port of the switch.
- 2. Power cycle the switch to reboot it.
- 3. On the administrative terminal, interrupt the boot process when prompted to enter the cpboot bootloader.
- 4. Execute the **osinfo** command to display the versions of AOS-W hosted on partition 0 and partition 1.
- 5. Execute the **def_part 0** or **def_part 1** command depending on which partition hosts the previous version AOS-W 6.4.0.0-FIPS or later version.

6. Execute the **reset** or **bootf** to reboot the switch.

This restores the switch to the previous version of AOS-W and switch configuration. Contact Alcatel-Lucent support for instructions to proceed with the upgrade.

GRE Tunnel-Type Requirements

This section describes the important points to remember when configuring an L2 GRE tunnel with respect to tunnel type:

- AOS-W 6.5.4.7 continues to support L2 GRE tunnel type zero, but it is recommended to use a non-zero tunnel type.
- If both L2 and L3 tunnels are configured between endpoint devices, you must use a non-zero tunnel type for L2 GRE tunnels.

Important Points to Remember and Best Practices

Ensure a successful upgrade and optimize your upgrade procedure by taking the recommended actions provided in the following list. You should save this list for future use.

- Schedule the upgrade during a maintenance window and notify your community of the planned upgrade. This prevents users from being surprised by a brief wireless network outage during the upgrade.
- Avoid making any other changes to your network, such as configuration changes, hardware upgrades, or changes to the rest of the network during the upgrade. This simplifies troubleshooting.
- Know your network and verify the state of your network by answering the following questions:
 - How many APs are assigned to each switch? Verify this information by navigating to the Monitoring > NETWORK > All Access Points section of the WebUI, or by executing the show ap active and show ap database CLI commands.
 - How are those APs discovering the switch (DNS, DHCP Option, Broadcast)?
 - What version of AOS-W is currently on the switch?
 - Are all switches in a master-local cluster running the same version of software?
 - Which services are used on the switches (employee wireless, guest access, remote AP, wireless voice)?
- Resolve any existing issues (consistent or intermittent) before you upgrade.
- If possible, use FTP to load software images to the switch. FTP is faster than TFTP and offers more resilience over slow links. If you must use TFTP, ensure the TFTP server can send over 30 MB of data.
- Always upgrade the non-boot partition first. If problems occur during the upgrade, you can restore the flash, and switch back to the boot partition.
 Upgrading the non-boot partition gives you a smoother downgrade path should it be required.
- Before you upgrade to this version of AOS-W, assess your software license requirements and load any new or expanded licenses you may require.
 For a detailed description of these new license modules, refer to the "Software Licenses" chapter in the AOS-W 6.5.x User Guide.

Memory Requirements

All Alcatel-Lucent switches store critical configuration data on an onboard compact flash memory module. Ensure that there is always free flash space on the switch. Loading multiple large files such as JPEG images for RF Plan can consume flash space quickly. To maintain the reliability of your WLAN network, the following compact memory best practices are recommended:

- Confirm that there is at least 60 MB of free memory available for an upgrade using the WebUI, or execute the **show memory** command to confirm that there is at least 40 MB of free memory available for an upgrade using the CLI. Do not proceed unless this much free memory is available. To recover memory, reboot the switch. After the switch comes up, upgrade immediately.
- Confirm that there is at least 75 MB of flash space available for an upgrade using the WebUI, or execute the **show storage** command to confirm that there is at least 60 MB of flash space available for an upgrade using the CLI.

In certain situations, a reboot or a shutdown could cause the switch to lose the information stored in its compact flash card. To avoid such issues, it is recommended that you execute the **halt** command before power cycling.

If the output of the **show storage** command indicates that there is insufficient flash memory space, you must free up some used memory. Any switch logs, crash data, or flash backups should be copied to a location off the switch, then deleted from the switch to free up flash space. You can delete the following files from the switch to free up some memory before upgrading:

- Crash Data: Execute the tar crash command to compress crash files to a file named crash.tar. Use the procedures described in <u>Backing up</u>
 <u>Critical Data on page 29</u> to copy the crash.tar file to an external server, and then execute the tar clean crash command to delete the file from the switch.
- Flash Backups: Use the procedures described in <u>Backing up Critical Data on page 29</u> to back up the flash directory to a file named flash.tar.gz, and then execute the tar clean flash command to delete the file from the switch.
- Log files: Execute the tar logs command to compress log files to a file named logs.tar. Use the procedures described in <u>Backing up Critical Data</u> on page 29 to copy the logs.tar file to an external server, and then execute the tar clean logs command to delete the file from the switch.

Backing up Critical Data

It is important to frequently back up all critical configuration data and files on the compact flash file system to an external server or mass storage device. At the very least, you should include the following files in these frequent backups:

- Configuration data
- WMS database
- Local user database
- Licensing database
- Floor plan JPEGs
- Custom captive portal pages

- X.509 certificates
- Switch Logs

Backing up and Restoring Compact Flash in the WebUI

The WebUI provides the easiest way to back up and restore the entire compact flash file system. The following steps describe how to back up and restore the compact flash file system using the WebUI on the switch:

- 1. Click the **Configuration** tab.
- 2. Click **Save Configuration** at the top of the page.
- 3. Navigate to the **Maintenance > File > Backup Flash** page.
- 4. Click **Create Backup** to back up the contents of the compact flash file system to the **flashbackup.tar.gz** file.
- 5. Click **Copy Backup** to copy the file to an external server.

You can later copy the backup file from the external server to the compact flash file system using the file utility in the **Maintenance > File > Copy Files** page.

6. To restore the backup file to the Compact Flash file system, navigate to the **Maintenance > File > Restore Flash** page and click **Restore**.

Backing up and Restoring Compact Flash in the CLI

The following steps describe the backup and restore procedure for the entire compact flash file system using the switch's command line:

1. Make sure you are in the **enable** mode in the switch CLI, and execute the following command:

```
(host) # write memory
```

2. Execute the **backup** command to back up the contents of the compact flash file system to the **flashbackup.tar.gz** file.

```
(host) # backup flash
Please wait while we tar relevant files from flash...
Please wait while we compress the tar file...
Checking for free space on flash...
Copying file to flash...
File flashbackup.tar.gz created successfully on flash.
```

3. Execute the **copy** command to transfer the backup flash file to an external server or storage device.

```
(host) copy flash: flashbackup.tar.gz ftp: <ftphost> <ftpusername> <ftpuserpassword> <remote directory>
```

(host) copy flash: flashbackup.tar.gz usb: partition <partition-number>

You can later transfer the backup flash file from the external server or storage device to the compact flash file system by executing the **copy** command.

```
(host) # copy tftp: <tftphost> <filename> flash: flashbackup.tar.gz
(host) # copy usb: partition <partition-number> <filename> flash: flashbackup.tar.gz
```

4. Execute the **restore** command to untar and extract the **flashbackup.tar.gz** file to the compact flash file system.

(host) # restore flash

Upgrading in a Multiswitch Network

In a multiswitch network (a network with two or more Alcatel-Lucent switches), special care must be taken to upgrade all switches based on the switch type (master or local). Be sure to back up all switches being upgraded, as described in <u>Backing up Critical Data on page 29</u>.

For proper operation, all switches in the network must be upgraded with the same version of AOS-W software. For redundant environments such as VRRP, the switches should be of the same model.

To upgrade an existing multiswitch system to this version of AOS-W:

- 1. Load the software image onto all switches (including redundant master switches).
- 2. If all the switches cannot be upgraded with the same software image and rebooted simultaneously, use the following guidelines:
 - a. Upgrade the software image on all the switches. Reboot the master switch. After the master switch completes rebooting, you can reboot the local switches simultaneously.
 - b. Verify that the master and all local switches are upgraded properly.

Installing the FIPS Version of AOS-W 6.5.4.7

Download the FIPS version of the software from <u>https://support.esd.alcatel-lucent.com</u>.

Instructions on Installing FIPS Software

Before you install a FIPS version of the software on a switch that is currently running a non-FIPS version of the software, follow the procedure below. If you are currently running a FIPS version of the software on the switch, you do not have to perform a **write erase** to reset the configuration as mentioned in step 2.

Follow the steps below to install the FIPS software on a switch that is currently running a non-FIPS version of the software:

- 1. Install the FIPS version of the software on the switch.
- 2. Execute the **write erase** command to reset the configuration to the factory default; otherwise, you cannot log in to the switch using the CLI or WebUI.
- 3. Reboot the switch by executing the **reload** command.

This is the only supported method of moving from non-FIPS software to FIPS software.

Upgrading to AOS-W 6.5.4.7

The following sections provide the procedures for upgrading the switch to AOS-W 6.5.4.7 by using the WebUI and the CLI.

Install Using the WebUI

Confirm that there is at least 60 MB of free memory and at least 75 MB of flash space available for an upgrade using the WebUI. For details, see <u>Memory</u> Requirements on page 29.

When you navigate to the **Configuration** tab of the switch's WebUI, the switch may display the **Error getting information: command is not supported on this platform** message. This error occurs when you upgrade the switch from the WebUI and navigate to the **Configuration** tab as soon as the switch completes rebooting. This error is expected and disappears after clearing the Web browser cache.

Upgrading From a Recent Version of AOS-W

The following steps describe the procedure to upgrade from one of these recent AOS-W versions:

- AOS-W 3.4.4.1 or later
- AOS-W 5.0.3.1 or the latest version of AOS-W 5.0.x
- AOS-W 6.0.1.0 or later version of AOS-W 6.x

When upgrading from an existing AOS-W 6.4.x release, it is required to set AMON packet size manually to a desired value. However, the packet size is increased to 32K by default for fresh installations of AOS-W 6.4.3.9.

Install the AOS-W software image from a PC or workstation using the WebUI on the switch. You can also install the software image from a TFTP or FTP server using the same WebUI page.

- 1. Download AOS-W 6.5.4.7 from the customer support site.
- 2. Upload the new software image(s) to a PC or workstation on your network.
- 3. Validate the SHA hash for a software image:
 - a. Download the **Alcatel.sha256** file from the download directory.
 - b. To verify the image, load the image onto a Linux system and execute the **sha256sum <filename>** command or use a suitable tool for your operating system that can generate a **SHA256** hash of a file.
 - c. Verify that the output produced by this command matches the hash value found on the support site.

The AOS-W image file is digitally signed, and is verified using RSA2048 certificates preloaded on the switch at the factory. Therefore, even if you do not manually verify the SHA hash of a software image, the switch will not load a corrupted image.

- 4. Log in to the AOS-W WebUI from the PC or workstation.
- 5. Navigate to the **Maintenance > Controller > Image Management** page.
 - a. Select the **Local File** option.
 - b. Click **Browse** to navigate to the saved image file on your PC or workstation.

- 6. Select the downloaded image file.
- 7. Choose the nonboot partition from the **Partition to Upgrade** radio button.
- 8. Choose **Yes** in the **Reboot Controller After Upgrade** radio button to automatically reboot after upgrading. Choose **No**, if you do not want the switch to reboot immediately.

Upgrade will not take effect until you reboot the switch.

9. Choose Yes in the Save Current Configuration Before Reboot radio button.

10.Click Upgrade.

When the software image is uploaded to the switch, a popup window displays the **Changes were written to flash successfully** message.

11.Click **OK**.

If you chose to automatically reboot the switch in step 8, the reboot process starts automatically within a few seconds (unless you cancel it).

12. When the reboot process is complete, log in to the WebUI and navigate to the **Monitoring > NETWORK > All WLAN Controllers** page to verify the upgrade.

When your upgrade is complete, perform the following steps to verify that the switch is functioning as expected.

- 1. Log in to the WebUI to verify all your switches are up after the reboot.
- 2. Navigate to the **Monitoring > NETWORK > Network Summary** page to determine if your APs are up and ready to accept clients. In addition, verify that the number of access points and clients are what you would expect.
- 3. Verify that the number of access points and clients are what you would expect.
- 4. Test a different type of client for each access method that you use and in different locations when possible.
- 5. Complete a backup of all critical configuration data and files on the compact flash file system to an external server or mass storage facility. See <u>Backing up Critical Data on page 29</u> for information on creating a backup. If the flash (Provisioning/Backup) image version string shows the letters *rn*, for example, 3.3.2.11-rn-3.0, note those AP names and IP addresses.

Install Using the CLI

Confirm that there is at least 40 MB of free memory and at least 60 MB of flash space available for an upgrade using the CLI. For details, see <u>Memory</u> <u>Requirements on page 29</u>.

Upgrading From a Recent Version of AOS-W

The following steps describe the procedure to upgrade from one of these recent AOS-W versions:

AOS-W 3.4.4.1 or later

- AOS-W 5.0.3.1 or the latest version of AOS-W 5.0.x
- AOS-W 6.0.1.0 or later version of AOS-W 6.x

To install the AOS-W software image from a PC or workstation using the CLI on the switch:

- 1. Download AOS-W 6.5.4.7 from the customer support site.
- 2. Open an SSH session on your master (and local) switches.
- 3. Execute the ping command to verify the network connection from the target switch to the SCP/FTP/TFTP server.
 (host) # ping <ftphost>

```
or
(host) # ping <tftphost>
or
```

(host) # ping <scphost>

- 4. Execute the **show image version** command to check if the AOS-W images are loaded on the switch's flash partitions. The partition number appears in the **Partition** row; **0:0** is partition 0, and **0:1** is partition 1. The active boot partition is marked as **Default boot**.
- 5. Execute the **copy** command to load the new image onto the nonboot partition.

```
(host) # copy ftp: <ftphost> <ftpusername> <image filename> system: partition <0|1>
Or
(host) # copy tftp: <tftphost> <image filename> system: partition <0|1>
Or
(host) # copy scp: <scphost> <scpusername> <image filename> system: partition <0|1>
Or
(host) # copy usb: partition <partition-number> <image filename> system: partition <0|1>
```


The USB option is available on the OAW-40xx Series and OAW-4x50 Series switches.

- 6. Execute the **show image version** command to verify that the new image is loaded.
- 7. Reboot the switch.

(host) # reload

8. Execute the **show version** command to verify that the upgrade is complete.

(host) # show version

When your upgrade is complete, perform the following steps to verify that the switch is functioning as expected.

- 1. Log in to the CLI to verify that all your switches are up after the reboot.
- 2. Execute the **show ap active** command to determine if your APs are up and ready to accept clients.
- 3. Execute the **show ap database** command to verify that the number of access points and clients are what you expected.

- 4. Test a different type of client for each access method that you use and in different locations when possible.
- 5. Complete a backup of all critical configuration data and files on the compact flash file system to an external server or mass storage facility. See <u>Backing up Critical Data on page 29</u> for information on creating a backup.

Downgrading

If necessary, you can return to your previous version of AOS-W.

Database versions are not compatible between different AOS-W releases.

If you do not downgrade to a previously saved pre-6.1 configuration, some parts of your deployment may not work as they previously did. For example, when downgrading from AOS-W 6.5.4.7 to 5.0.3.2, changes made to WIPS in AOS-W 6.x prevent the new predefined IDS profile assigned to an AP group from being recognized by the older version of AOS-W. This unrecognized profile can prevent associated APs from coming up, and can trigger a profile error. These new IDS profiles begin with *ids-transitional* while older IDS profiles do not include *transitional*. If you have encountered this issue, execute the **show profile-errors** and **show ap-group** commands to view the IDS profile associated with the AP group.

When reverting the switch software, whenever possible, use the previous version of software known to be used on the system. Loading a release not previously confirmed to operate in your environment could result in an improper configuration.

Before You Begin

Before you reboot the switch with the preupgrade software version, you must perform the following steps:

- 1. Back up your switch. For details, see <u>Backing up Critical Data on page 29</u>.
- 2. Verify that the control plane security is disabled.
- 3. Set the switch to boot with the previously saved pre-AOS-W 6.5.4.7 configuration file.
- 4. Set the switch to boot from the system partition that contains the previously running AOS-W image.

When you specify a boot partition (or copy an image file to a system partition), the software checks to ensure that the image is compatible with the configuration file used on the next switch reload. An error message is displayed if system boot parameters are set for incompatible image and configuration files.

- 5. After downgrading the software on the switch, perform the following steps:
 - Restore pre-AOS-W 6.5.4.7 flash backup from the file stored on the switch. Do not restore the AOS-W 6.5.4.7 flash backup file.
 - You do not need to reimport the WMS database or RF Plan data. However, if you have added changes to RF Plan in AOS-W 6.5.4.7, the changes do not appear in RF Plan in the downgraded AOS-W version.
 - If you installed any certificates while running AOS-W 6.5.4.7, you need to reinstall the certificates in the downgraded AOS-W version.

Downgrading Using the WebUI

The following section describes how to use the WebUI to downgrade the software on the switch.

- 1. If the saved preupgrade configuration file is on an external FTP/TFTP server, copy the file to the switch by navigating to the **Maintenance > File > Copy Files** page.
 - a. For **Source Selection**, select FTP/TFTP server, and enter the IP address of the FTP/TFTP server and the name of the preupgrade configuration file.
 - b. For **Destination Selection**, enter a file name (other than default.cfg) for Flash File System.
- 2. Set the switch to boot with your preupgrade configuration file by navigating to the **Maintenance > Controller > Boot Parameters** page.
 - a. Select the saved preupgrade configuration file from the **Configuration File** drop-down list.
 - b. Click Apply.
- Determine the partition on which your previous software image is stored by navigating to the Maintenance > Controller > Image Management page. If there is no previous software image stored on your system partition, load it into the backup system partition (you cannot load a new image into the active system partition) by performing the following steps:
 - a. Enter the FTP/TFTP server address and image file name.
 - b. Select the backup system partition.
 - c. Click Upgrade.
- 4. Navigate to the Maintenance > Controller > Boot Parameters page.
 - a. Select the system partition that contains the preupgrade image file as the boot partition.
 - b. Click Apply.
- 5. Navigate to the **Maintenance > Controller > Reboot Controller** page. Click **Continue**. The switch reboots after the countdown period.
- 6. When the boot process is complete, verify that the switch is using the correct software by navigating to the **Maintenance > Controller > Image Management** page.

Downgrading Using the CLI

The following section describes how to use the CLI to downgrade the software on the switch.

1. If the saved preupgrade configuration file is on an external FTP/TFTP server, use the following command to copy it to the switch: (host) # copy ftp: <ftphost> <ftpusername> <image filename> system: partition 1

or

(host) # copy tftp: <tftphost> <image filename> system: partition 1

2. Set the switch to boot with your preupgrade configuration file.

(host) # boot config-file <backup configuration filename>

3. Execute the **show image version** command to view the partition on which your previous software image is stored. You cannot load a new image into the active system partition (the default boot).

In the following example, partition 1, the backup system partition, contains the backup release AOS-W 6.1.3.2. Partition 0, the default boot partition, contains the AOS-W 6.5.4.7 image.

4. Set the backup system partition as the new boot partition.

(host) # boot system partition 1

5. Reboot the switch.

(host) # reload

6. When the boot process is complete, verify that the switch is using the correct software.

```
(host) # show image version
```

Before You Call Technical Support

Before you place a call to Technical Support, follow these steps:

- 1. Provide a detailed network topology (including all the devices in the network between the user and the Alcatel-Lucent switch with IP addresses and Interface numbers if possible).
- 2. Provide the wireless device's make and model number, OS version (including any service packs or patches), wireless Network Interface Card (NIC) make and model number, wireless NIC's driver date and version, and the wireless NIC's configuration.
- 3. Provide the switch logs and output of the show tech-support command via the WebUI Maintenance tab or via the CLI (tar logs tech-support).
- 4. Provide the syslog file of the switch at the time of the problem. Alcatel-Lucent strongly recommends that you consider adding a syslog server if you do not already have one to capture logs from the switch.
- 5. Let the support person know if this is a new or existing installation. This helps the support team to determine the troubleshooting approach, depending on whether you have an outage in a network that worked in the past, a network configuration that has never worked, or a brand new installation.
- 6. Let the support person know if there are any recent changes in your network (external to the Alcatel-Lucent switch) or any recent changes to your switch and/or AP configuration. If there was a configuration change, list the exact configuration steps and commands used.
- 7. Provide the date and time (if possible) of when the problem first occurred. If the problem is reproducible, list the exact steps taken to re-create the problem.
- 8. Provide any wired or wireless sniffer traces taken during the time of the problem.
- 9. Provide the switch site access information, if possible.

The following table provides a brief description of the terminology used in this guide.

3DES

Triple Data Encryption Standard. 3DES is a symmetric-key block cipher that applies the DES cipher algorithm three times to each data block.

3G

Third Generation of Wireless Mobile Telecommunications Technology. See W-CDMA.

3GPP

Third Generation Partnership Project. 3GPP is a collaborative project aimed at developing globally acceptable specifications for third generation mobile systems.

4G

Fourth Generation of Wireless Mobile Telecommunications Technology. See LTE.

802.11

802.11 is an evolving family of specifications for wireless LANs developed by a working group of the Institute of Electrical and Electronics Engineers (IEEE). 802.11 standards use the Ethernet protocol and Carrier Sense Multiple Access with collision avoidance (CSMA/CA) for path sharing.

802.11 bSec

802.11 bSec is an alternative to 802.11i. The difference between bSec and standard 802.11i is that bSec implements Suite B algorithms wherever possible. Notably, Advanced Encryption Standard-Counter with CBC-MAC is replaced by Advanced Encryption Standard - Galois/Counter Mode, and the Key Derivation Function (KDF) of 802.11i is upgraded to support SHA-256 and SHA-384.

802.11a

802.11a provides specifications for wireless systems. Networks using 802.11a operate at radio frequencies in the 5 GHz band. The specification uses a modulation scheme known as orthogonal frequency-division multiplexing (OFDM) that is especially well suited to use in office settings. The maximum data transfer rate is 54 Mbps.

802.11ac

802.11ac is a wireless networking standard in the 802.11 family that provides high-throughput WLANs on the 5 GHz band.

802.11b

802.11b is a WLAN standard often called Wi-Fi and is backward compatible with 802.11. Instead of the Phase-Shift Keying (PSK) modulation method used in 802.11 standards, 802.11b uses Complementary Code Keying (CCK) that allows higher data speeds and makes it less susceptible to multipath-propagation interference. 802.11b operates in the 2.4 GHz band and the maximum data transfer rate is 11 Mbps.

802.11d

802.11d is a wireless network communications specification for use in countries where systems using other standards in the 802.11 family are not allowed to operate. Configuration can be fine-tuned at the Media Access Control (MAC) layer level to comply with the rules of the country or district in which the network is to be used. Rules are subject to variation and include allowed frequencies, allowed power levels, and allowed signal bandwidth. 802.11d facilitates global roaming.

802.11e

802.11e is an enhancement to the 802.11a and 802.11b specifications that enhances the 802.11 Media Access Control layer with a coordinated Time Division Multiple Access (TDMA) construct. It adds error-correcting mechanisms for delay-sensitive applications such as voice and video. The 802.11e specification provides seamless interoperability between business, home, and public environments such as airports and hotels, and offers all subscribers high-speed Internet access with full-motion video, high-fidelity audio, and VoIP.

802.11g

802.11g offers transmission over relatively short distances at up to 54 Mbps, compared with the 11 Mbps theoretical maximum of 802.11b standard. 802.11g employs Orthogonal Frequency Division Multiplexing (OFDM), the modulation scheme used in 802.11a, to obtain higher data speed. Computers or terminals set up for 802.11g can fall back to speed of 11 Mbps, so that 802.11b and 802.11g devices can be compatible within a single network.

802.11h

802.11h is intended to resolve interference issues introduced by the use of 802.11a in some locations, particularly with military Radar systems and medical devices. Dynamic Frequency Selection (DFS) detects the presence of other devices on a channel and automatically switches the network to another channel if and when such signals are detected. Transmit Power Control (TPC) reduces the radio frequency (RF) output power of each network transmitter to a level that minimizes the risk of interference.

802.11i

802.11i provides improved encryption for networks that use 802.11a, 802.11b, and 802.11g standards. It requires new encryption key protocols, known as Temporal Key Integrity Protocol (TKIP) and Advanced Encryption Standard (AES).

802.11j

802.11 jis a proposed addition to the 802.11 family of standards that incorporates Japanese regulatory extensions to 802.11a; the main intent is to add channels in the radio frequency (RF) band of 4.9 GHz to 5.0 GHz.

802.11k

802.11k is an IEEE standard that enables APs and client devices to discover the best available radio resources for seamless BSS transition in a WLAN.

802.11m

802.11m is an Initiative to perform editorial maintenance, corrections, improvements, clarifications, and interpretations relevant to documentation for 802.11 family specifications.

802.11n

802.11n is a wireless networking standard to improve network throughput over the two previous standards, 802.11a and 802.11g. With 802.11n, there will be a significant increase in the maximum raw data rate from 54 Mbps to 600 Mbps with the use of four spatial streams at a channel width of 40 MHz.

802.11r

802.11r is an IEEE standard for enabling seamless BSS transitions in a WLAN. 802.11r standard is also referred to as Fast BSS transition.

802.11u

802.11u is an amendment to the IEEE 802.11 WLAN standards for connection to external networks using common wireless devices such as smartphones and tablet PCs. The 802.11u protocol provides wireless clients with a streamlined mechanism to discover and authenticate to suitable networks, and allows mobile users to roam between partner networks without additional authentication. An 802.11u-capable device supports the Passpoint technology from the Wi-Fi Alliance Hotspot 2.0 R2 Specification that simplifies and automates access to public Wi-Fi.

802.11v

802.11v is an IEEE standard that allows client devices to exchange information about the network topology and RF environment. This information is used for assigning best available radio resources for the client devices to provide seamless connectivity.

802.1Q

802.1Q is an IEEE standard that enables the use of VLANs on an Ethernet network. 802.1Q supports VLAN tagging.

802.1X

802.1X is an IEEE standard for port-based network access control designed to enhance 802.11 WLAN security. 802.1X provides an authentication framework that allows a user to be authenticated by a central authority.

802.3af

802.3af is an IEEE standard for Power over Ethernet (PoE) version that supplies up to 15.4W of DC power. See PoE.

802.3at

802.3at is an IEEE standard for PoE version that supplies up to 25.5W of DC power. See PoE+.

AAA

Authentication, Authorization, and Accounting. AAA is a security framework to authenticate users, authorize the type of access based on user credentials, and record authentication events and information about the network access and network resource consumption.

ABR

Area Border Router. ABR is used for establishing connection between the backbone networks and the Open Shortest Path First (OSPF) areas. ABR is located near the border of one or more OSPF areas.

AC

Access Category. As per the IEEE 802.11e standards, AC refers to various levels of traffic prioritization in Enhanced Distributed Channel Access (EDCA) operation mode. The WLAN applications prioritize traffic based on the Background, Best Effort, Video, and Voice access categories. AC can also refer to Alternating Current, a form of electric energy that flows when the appliances are plugged to a wall socket.

ACC

Advanced Cellular Coexistence. The ACC feature in APs enable WLANs to perform at peak efficiency by minimizing interference from 3G/4G/LTE networks, distributed antenna systems, and commercial small cell/femtocell equipment.

Access-Accept

Response from the RADIUS server indicating successful authentication and containing authorization information.

Access-Reject

Response from RADIUS server indicating that a user is not authorized.

Access-Request

RADIUS packet sent to a RADIUS server requesting authorization.

Accounting-Request

RADIUS packet type sent to a RADIUS server containing accounting summary information.

Accounting-Response

RADIUS packet sent by the RADIUS server to acknowledge receipt of an Accounting-Request.

ACE

Access Control Entry. ACE is an element in an ACL that includes access control information.

ACI

Adjacent Channel Interference. ACI refers to interference or interruptions detected on a broadcasting channel, caused by too much power on an adjacent channel in the spectrum.

ACL

Access Control List. ACL is a common way of restricting certain types of traffic on a physical port.

Active Directory

Microsoft Active Directory. The directory server that stores information about a variety of things, such as organizations, sites, systems, users, shares, and other network objects or components. It also provides authentication and authorization mechanisms, and a framework within which related services can be deployed.

ActiveSync

Mobile data synchronization app developed by Microsoft that allows a mobile device to be synchronized with either a desktop or a server running compatible software products.

ad hoc network

An ad hoc network is a network composed of individual devices communicating with each other directly. Many ad hoc networks are Local Area Networks (LANs) where computers or other devices are enabled to send data directly to one another rather than going through a centralized access point.

ADO

Active X Data Objects is a part of Microsoft Data Access Components (MDACs) that enables client applications to access data sources through an (Object Linking and Embedding Database) OLE DB provider. ADO supports key features for building client-server and Web-based applications.

ADP

Aruba Discovery Protocol. ADP is an Aruba proprietary Layer 2 protocol. It is used by the APs to obtain the IP address of the TFTP server from which it downloads the AP boot image.

AES

Advanced Encryption Standard. AES is an encryption standard used for encrypting and protecting electronic data. The AES encrypts and decrypts data in blocks of 128 bits (16 bytes), and can use keys of 128 bits, 192 bits, and 256 bits.

AIFSN

Arbitrary Inter-frame Space Number. AIFSN is set by the AP in beacon frames and probe responses. AIFS is a method of prioritizing a particular category of traffic over the other, for example prioritizing voice or video messages over email.

AirGroup

The application that allows the end users to register their personal mobile devices on a local network and define a group of friends or associates who are allowed to share them. AirGroup is primarily designed for colleges and other institutions. AirGroup uses zero configuration networking to allow Apple mobile devices, such as the AirPrint wireless printer service and the AirPlay mirroring service, to communicate over a complex access network topology.

AirWave Management Client

AirWave Management Client is a Windows software utility that enables client devices (such as a laptop) to act as passive RF sensors and augments the AirWave RAPIDS module.

ALE

Analytics and Location Engine. ALE gives visibility into everything the wireless network knows. This enables customers and partners to gain a wealth of information about the people on their premises. This can be very important for many different verticals and use cases. ALE includes a location engine that calculates associated and unassociated device location periodically using context streams, including RSSI readings, from WLAN controllers or Instant clusters.

ALG

Application Layer Gateway. ALG is a security component that manages application layer protocols such as SIP, FTP and so on.

AM

Air Monitor. AM is a mode of operation supported on wireless APs. When an AP operates in the Air Monitor mode, it enhances the wireless networks by collecting statistics, monitoring traffic, detecting intrusions, enforcing security policies, balancing wireless traffic load, self-healing coverage gaps, and more. However, clients cannot connect to APs operating in the AM mode.

AMON

Advanced Monitoring. AMON is used in Aruba WLAN deployments for improved network management, monitoring and diagnostic capabilities.

AMP

AirWave Management Platform. AMP is a network management system for configuring, monitoring, and upgrading wired and wireless devices on your network.

A-MPDU

Aggregate MAC Protocol Data Unit. A-MPDU is a method of frame aggregation, where several MPDUs are combined into a single frame for transmission.

A-MSDU

Aggregate MAC Service Data Unit. A-MSDU is a structure containing multiple MSDUs, transported within a single (unfragmented) data MAC MPDU.

ANQP

Access Network Query Protocol. ANQP is a query and a response protocol for Wi-Fi hotspot services. ANQP includes information Elements (IEs) that can be sent from the AP to the client to identify the AP network and service provider. The IEs typically include information about the domain name of the AP operator, the IP addresses available at the AP, and information about potential roaming partners accessible through the AP. If the client responds with a request for a specific IE, the AP will send a Generic Advertisement Service (GAS) response frame with the configured ANQP IE information.

ANSI

American National Standards Institute. It refers to the ANSI compliance standards for products, systems, services, and processes.

API

Application Programming Interface. Refers to a set of functions, procedures, protocols, and tools that enable users to build application software.

арр

Short form for application. It generally refers to the application that is downloaded and used on mobile devices.

ARM

Adaptive Radio Management. ARM dynamically monitors and adjusts the network to ensure that all users are allowed ready access. It enables full utilization of the available spectrum to support maximum number of users by intelligently choosing the best RF channel and transmit power for APs in their current RF environment.

ARP

Address Resolution Protocol. ARP is used for mapping IP network address to the hardware MAC address of a device.

Aruba Activate

Aruba Activate is a cloud-based service that helps provision your Aruba devices and maintain your inventory. Activate automates the provisioning process, allowing a single IT technician to easily and rapidly deploy devices throughout a distributed enterprise network.

ASCII

American Standard Code for Information Interchange. An ASCII code is a numerical representation of a character or an action.

band

Band refers to a specified range of frequencies of electromagnetic radiation.

BGP

Border Gateway Protocol. BGP is a routing protocol for exchanging data and information between different host gateways or autonomous systems on the Internet.

BLE

Bluetooth Low Energy. The BLE functionality is offered by Bluetooth® to enable devices to run for long durations with low power consumption.

BMC

Beacon Management Console. BMC manages and monitors beacons from the BLE devices. The BLE devices are used for location tracking and proximity detection.

BPDU

Bridge Protocol Data Unit. A BPDU is a data message transmitted across a local area network to detect loops in network topologies.

B-RAS

Broadband Remote Access Server. A B-RAS is a server that facilitates and converges traffic from multiple Internet traffic resources such as cable, DSL, Ethernet, or Broadband wireless.

BRE

Basic Regular Expression. The BRE syntax standards designed by the IEEE provides extension to the traditional Simple Regular Expressions syntax and allows consistency between utility programs such as grep, sed, and awk.

BSS

Basic Service Set. A BSS is a set of interconnected stations that can communicate with each other. BSS can be an independent BSS or infrastructure BSS. An independent BSS is an ad hoc network that does not include APs, whereas the infrastructure BSS consists of an AP and all its associated clients.

BSSID

Basic Service Set Identifier. The BSSID identifies a particular BSS within an area. In infrastructure BSS networks, the BSSID is the MAC address of the AP. In independent BSS or ad hoc networks, the BSSID is generated randomly.

BYOD

Bring Your Own Device. BYOD refers to the use of personal mobile devices within an enterprise network infrastructure.

CA

Certificate Authority or Certification Authority. Entity in a public key infrastructure system that issues certificates to clients. A certificate signing request received by the CA is converted into a certificate when the CA adds a signature generated with a private key. See digital certificate.

CAC

Call Admission Control. CAC regulates traffic volume in voice communications. CAC can also be used to ensure or maintain a certain level of audio quality in voice communications networks.

CALEA

Communications Assistance for Law Enforcement Act. To comply with the CALEA specifications and to allow lawful interception of Internet traffic by the law enforcement and intelligence agencies, the telecommunications carriers and manufacturers of telecommunications equipment are required to modify and design their equipment, facilities, and services to ensure that they have built-in surveillance capabilities.

Campus AP

Campus APs are used in private networks where APs connect over private links (LAN, WLAN, WAN or MPLS) and terminate directly on controllers. Campus APs are deployed as part of the indoor campus solution in enterprise office buildings, warehouses, hospitals, universities, and so on.

captive portal

A captive portal is a web page that allows the users to authenticate and sign in before connecting to a public-access network. Captive portals are typically used by business centers, airports, hotel lobbies, coffee shops, and other venues that offer free Wi-Fi hotspots for the guest users.

CCA

Clear Channel Assessment. In wireless networks, the CCA method detects if a channel is occupied or clear, and determines if the channel is available for data transmission.

CDP

Cisco Discovery Protocol. CDP is a proprietary Data Link Layer protocol developed by Cisco Systems. CDP runs on Cisco devices and enables networking applications to learn about the neighboring devices directly connected to the network.

CDR

Call Detail Record. A CDR contains the details of a telephone or VoIP call, such as the origin and destination addresses of the call, the start time and end time of the call, any toll charges that were added through the network or charges for operator services, and so on.

CEF

Common Event Format. The CEF is a standard for the interoperability of event or log-generating devices and applications. The standard syntax for CEF includes a prefix and a variable extension formatted as key-value pairs.

CGI

Common Gateway Interface. CGI is a standard protocol for exchanging data between the web servers and executable programs running on a server to dynamically process web pages.

CHAP

Challenge Handshake Authentication Protocol. CHAP is an authentication scheme used by PPP servers to validate the identity of remote clients.

CIDR

Classless Inter-Domain Routing. CIDR is an IP standard for creating and allocating unique identifiers for networks and devices. The CIDR IP addressing scheme is used as a replacement for the older IP addressing scheme based on classes A, B, and C. With CIDR, a single IP address can be used to designate many unique IP addresses. A CIDR IP address ends with a slash followed by the IP network prefix, for example, 192.0.2.0/24.

ClearPass

ClearPass is an access management system for creating and enforcing policies across a network to all devices and applications. The ClearPass integrated platform includes applications such as Policy Manager, Guest, Onboard, OnGuard, Insight, Profile, QuickConnect, and so on.

ClearPass Guest

ClearPass Guest is a configurable ClearPass application for secure visitor network access management.

ClearPass Policy Manager

ClearPass Policy Manager is a baseline platform for policy management, AAA, profiling, network access control, and reporting. With ClearPass Policy Manager, the network administrators can configure and manage secure network access that accommodates requirements across multiple locations and multivendor networks, regardless of device ownership and connection method.

CLI

Command-Line Interface. A console interface with a command line shell that allows users to execute text input as commands and convert these commands to appropriate functions.

CN

Common Name. CN is the primary name used to identify a certificate.

CNA

Captive Network Assistant. CNA is a popup page shown when joining a network that has a captive portal.

СоА

Change of Authorization. The RADIUS CoA is used in the AAA service framework to allow dynamic modification of the authenticated, authorized, and active subscriber sessions.

CoS

Class of Service. CoS is used in data and voice protocols for classifying packets into different types of traffic (voice, video, or data) and setting a service priority. For example, voice traffic can be assigned a higher priority over email or HTTP traffic.

СРЕ

Customer Premises Equipment. It refers to any terminal or equipment located at the customer premises.

CPsec

Control Plane Security. CPsec is a secure form of communication between a controller and APs to protect the control plane communications. This is performed by means of using public-key self-signed certificates created by each master controller.

CPU

Central Processing Unit. A CPU is an electronic circuitry in a computer for processing instructions.

CRC

Cyclic Redundancy Check. CRC is a data verification method for detecting errors in digital data during transmission, storage, or retrieval.

CRL

Certificate Revocation List. CRL is a list of revoked certificates maintained by a certification authority.

cryptobinding

Short for cryptographic binding. A procedure in a tunneled EAP method that binds together the tunnel protocol and the tunneled authentication methods, ensuring the relationship between a collection of data assets. Cryptographic binding focuses on protecting the server; mutual cryptographic binding protects both peer and server.

CSA

Channel Switch Announcement. The CSA element enables an AP to advertise that it is switching to a new channel before it begins transmitting on that channel. This allows the clients, which support CSA, to transition to the new channel with minimal downtime.

CSMA/CA

Carrier Sense Multiple Access / Collision Avoidance. CSMA/CA is a protocol for carrier transmission in networks using the 802.11 standard. CSMA/CA aims to prevent collisions by listening to the broadcasting nodes, and informing devices not to transmit any data until the broadcasting channel is free.

CSR

Certificate Signing Request. In PKI systems, a CSR is a message sent from an applicant to a CA to apply for a digital identity certificate.

CSV

Comma-Separated Values. A file format that stores tabular data in the plain text format separated by commas.

CTS

Clear to Send. The CTS refers to the data transmission and protection mechanism used by the 802.11 wireless networking protocol to prevent frame collision occurrences. See RTS.

CW

Contention Window. In QoS, CW refers to a window set for access categories based on the type of traffic. Based on the type and volume of the traffic, the minimum and maximum values can be calculated to provide a wider window when necessary.

DAI

Dynamic ARP inspection. A security feature that validates ARP packets in a network.

DAS

Distributed Antenna System. DAS is a network of antenna nodes strategically placed around a geographical area or structure for additional cellular coverage.

dB

Decibel. Unit of measure for sound or noise and is the difference or ratio between two signal levels.

dBm

Decibel-Milliwatts. dBm is a logarithmic measurement (integer) that is typically used in place of mW to represent receive-power level. AMP normalizes all signals to dBm, so that it is easy to evaluate performance between various vendors.

DCB

Data Center Bridging. DCB is a collection of standards developed by IEEE for creating a converged data center network using Ethernet.

DCE

Data Communication Equipment. DCE refers to the devices that establish, maintain, and terminate communication network sessions between a data source and its destination.

DCF

Distributed Coordination Function. DCF is a protocol that uses carrier sensing along with a four-way handshake to maximize the throughput while preventing packet collisions.

DDMO

Distributed Dynamic Multicast Optimization. DDMO is similar to Dynamic Multicast Optimization (DMO) where the multicast streams are converted into unicast streams on the AP instead of the controller, to enhance the quality and reliability of streaming videos, while preserving the bandwidth available to non-video clients.

DES

Data Encryption Standard. DES is a common standard for data encryption and a form of secret key cryptography, which uses only one key for encryption and decryption.

designated router

Designated router refers to a router interface that is elected to originate network link advertisements for networks using the OSPF protocol.

destination NAT

Destination Network Address Translation. Destination NAT is a process of translating the destination IP address of an end route packet in a network. Destination NAT is used for redirecting the traffic destined to a virtual host to the real host, where the virtual host is identified by the destination IP address and the real host is identified by the translated IP address.

DFS

Dynamic Frequency Selection. DFS is a mandate for radio systems operating in the 5 GHz band to be equipped with means to identify and avoid interference with Radar systems.

DFT

Discrete Fourier Transform. DFT converts discrete-time data sets into a discrete-frequency representation. See FFT.

DHCP

Dynamic Host Configuration Protocol. A network protocol that enables a server to automatically assign an IP address to an IP-enabled device from a defined range of numbers configured for a given network.

DHCP snooping

DHCP snooping enables the switch to monitor and control DHCP messages received from untrusted devices that are connected to the switch.

digital certificate

A digital certificate is an electronic document that uses a digital signature to bind a public key with an identity—information such as the name of a person or an organization, address, and so forth.

Digital wireless pulse

A wireless technology for transmitting large amounts of digital data over a wide spectrum of frequency bands with very low power for a short distance. Ultra Wideband radio can carry a huge amount of data over a distance up to 230 ft at very low power (less than 0.5 mW), and has the ability to carry signals through doors and other obstacles that tend to reflect signals at more limited bandwidths and a higher power.

Disconnect-Ack

Disconnect-Ack is a NAS response packet to a Disconnect-Request, which indicates that the session was disconnected.

Disconnect-Nak

Disconnect-Nak is NAS response packet to a Disconnect-Request, which indicates that the session was not disconnected.

Disconnect-Request

Disconnect-Request is a RADIUS packet type sent to a NAS requesting that a user or session be disconnected.

distribution certificate

Distribution certificate is used for digitally signing iOS mobile apps to enable enterprise app distribution. It verifies the identity of the app publisher.

DLNA

Digital Living Network Alliance. DLNA is a set of interoperability guidelines for sharing digital media among multimedia devices.

DMO

Dynamic Multicast Optimization. DMO is a process of converting multicast streams into unicast streams over a wireless link to enhance the quality and reliability of streaming videos, while preserving the bandwidth available to non-video clients.

DN

Distinguished Name. A series of fields in a digital certificate that, taken together, constitute the unique identity of the person or device that owns the digital certificate. Common fields in a DN include country, state, locality, organization, organizational unit, and the "common name", which is the primary name used to identify the certificate.

DNS

Domain Name System. A DNS server functions as a phone book for the intranet and Internet users. It converts human-readable computer host names into IP addresses and IP addresses into host names. It stores several records for a domain name such as an address 'A' record, name server (NS), and mail exchanger (MX) records. The Address 'A' record is the most important record that is stored in a DNS server, because it provides the required IP address for a network peripheral or element.

DOCSIS

Data over Cable Service Interface Specification. A telecommunication standard for Internet access through cable modem.

DoS

Denial of Service. DoS is any type of attack where the attackers send excessive messages to flood traffic and thereby preventing the legitimate users from accessing the service.

DPD

Dead Peer Detection. A method used by the network devices to detect the availability of the peer devices.

DPI

Deep Packet Inspection. DPI is an advanced method of network packet filtering that is used for inspecting data packets exchanged between the devices and systems over a network. DPI functions at the Application layer of the Open Systems Interconnection (OSI) reference model and enables users to identify, categorize, track, reroute, or stop packets passing through a network.

DRT

Downloadable Regulatory Table. The DRT feature allows new regulatory approvals to be distributed for APs without a software upgrade or patch.

DS

Differentiated Services. The DS specification aims to provide uninterrupted quality of service by managing and controlling the network traffic, so that certain types of traffic get precedence.

DSCP

Differentiated Services Code Point. DSCP is a 6-bit packet header value used for traffic classification and priority assignment.

DSL

Digital Subscriber Line. The DSL technology allows the transmission of digital data over telephone lines. A DSL modem is a device used for connecting a computer or router to a telephone line that offers connectivity to the Internet.

DSSS

Direct-Sequence Spread Spectrum. DSSS is a modulation technique used for reducing overall signal interference. This technique multiplies the original data signal with a pseudo random noise spreading code. Spreading of this signal makes the resulting wideband channel more noisy, thereby increasing the resistance to interference. See FHSS.

DST

Daylight Saving Time. DST is also known as summer time that refers to the practice of advancing clocks, so that evenings have more daylight and mornings have less. Typically clocks are adjusted forward one hour near the start of spring and are adjusted backward in autumn.

DTE

Data Terminal Equipment. DTE refers to a device that converts user information into signals or re-converts the received signals.

DTIM

Delivery Traffic Indication Message. DTIM is a kind of traffic indication map. A DTIM interval determines when the APs must deliver broadcast and multicast frames to their associated clients in power save mode.

DTLS

Datagram Transport Layer Security. DTLS communications protocol provides communications security for datagram protocols.

dynamic authorization

Dynamic authorization refers to the ability to make changes to a visitor account's session while it is in progress. This might include disconnecting a session or updating some aspect of the authorization for the session.

dynamic NAT

Dynamic Network Address Translation. Dynamic NAT maps multiple public IP addresses and uses these addresses with an internal or private IP address. Dynamic NAT helps to secure a network by masking the internal configuration of a private network.

EAP

Extensible Authentication Protocol. An authentication protocol for wireless networks that extends the methods used by the PPP, a protocol often used when connecting a computer to the Internet. EAP can support multiple authentication mechanisms, such as token cards, smart cards, certificates, one-time passwords, and public key encryption authentication.

EAP-FAST

EAP – Flexible Authentication Secure Tunnel (tunneled).

EAP-GTC

EAP – Generic Token Card. (non-tunneled).

EAP-MD5

EAP – Method Digest 5. (non-tunneled).

EAP-MSCHAP

EAP Microsoft Challenge Handshake Authentication Protocol.

EAP-MSCHAPv2

EAP Microsoft Challenge Handshake Authentication Protocol Version 2.

EAPoL

Extensible Authentication Protocol over LAN. A network port authentication protocol used in IEEE 802.1X standards to provide a generic network sign-on to access network resources.

EAP-PEAP

EAP-Protected EAP. A widely used protocol for securely transporting authentication data across a network (tunneled).

EAP-PWD

EAP-Password. EAP-PWD is an EAP method that uses a shared password for authentication.

EAP-TLS

EAP-Transport Layer Security. EAP-TLS is a certificate-based authentication method supporting mutual authentication, integrity-protected ciphersuite negotiation and key exchange between two endpoints. See RFC 5216.

EAP-TTLS

EAP-Tunneled Transport Layer Security. EAP-TTLS is an EAP method that encapsulates a TLS session, consisting of a handshake phase and a data phase. See RFC 5281.

ECC

Elliptical Curve Cryptography or Error correcting Code memory. Elliptical Curve Cryptography is a public-key encryption technique that is based on elliptic curve theory used for creating faster, smaller, and more efficient cryptographic keys. Error Correcting Code memory is a type of computer data storage that can detect and correct the most common kinds of internal data corruption. ECC memory is used in most computers where data corruption cannot be tolerated under any circumstances, such as for scientific or financial computing.

ECDSA

Elliptic Curve Digital Signature Algorithm. ECDSA is a cryptographic algorithm that supports the use of public or private key pairs for encrypting and decrypting information.

EDCA

Enhanced Distributed Channel Access. The EDCA function in the IEEE 802.11e Quality of Service standard supports differentiated and distributed access to wireless medium based on traffic priority and Access Category types. See WMM and WME.

EIGRP

Enhanced Interior Gateway Routing Protocol. EIGRP is a routing protocol used for automating routing decisions and configuration in a network.

EIRP

Effective Isotropic Radiated Power or Equivalent Isotropic Radiated Power. EIRP refers to the output power generated when a signal is concentrated into a smaller area by the Antenna.

ESI

External Services Interface. ESI provides an open interface for integrating security solutions that solve interior network problems such as viruses, worms, spyware, and corporate compliance.

ESS

Extended Service Set. An ESS is a set of one or more interconnected BSSs that form a single sub network.

ESSID

Extended Service Set Identifier. ESSID refers to the ID used for identifying an extended service set.

Ethernet

Ethernet is a network protocol for data transmission over LAN.

EULA

End User License Agreement. EULA is a legal contract between a software application publisher or author and the users of the application.

FCC

Federal Communications Commission. FCC is a regulatory body that defines standards for the interstate and international communications by radio, television, wire, satellite, and cable.

FFT

Fast Fourier Transform. FFT is a frequency analysis mechanism that aims at faster conversion of a discrete signal in time domain into a discrete frequency domain representation. See also DFT.

FHSS

Frequency Hopping Spread Spectrum. FHSS is transmission technique that allows modulation and transmission of a data signal by rapidly switching a carrier among many frequency channels in a random but predictable sequence. See also DSSS.

FIB

Forwarding Information Base. FIB is a forwarding table that maps MAC addresses to ports. FIB is used in network bridging, routing, and similar functions to identify the appropriate interface for forwarding packets.

FIPS

Federal Information Processing Standards. FIPS refers to a set of standards that describe document processing, encryption algorithms, and other information technology standards for use within non-military government agencies, and by government contractors and vendors who work with these agencies.

firewall

Firewall is a network security system used for preventing unauthorized access to or from a private network.

FQDN

Fully Qualified Domain Name. FQDN is a complete domain name that identifies a computer or host on the Internet.

FQLN

Fully Qualified Location Name. FQLN is a device location identifier in the format: APname.Floor.Building.Campus.

frequency allocation

Use of radio frequency spectrum as regulated by governments.

FSPL

Free Space Path Loss. FSPL refers to the loss in signal strength of an electromagnetic wave that would result from a line-of-sight path through free space (usually air), with no obstacles nearby to cause reflection or diffraction.

FTP

File Transfer Protocol. A standard network protocol used for transferring files between a client and server on a computer network.

GARP

Generic Attribute Registration Protocol. GVRP is a LAN protocol that allows the network nodes to register and de-register attributes, such as network addresses, with each other.

GAS

Generic Advertisement Service. GAS is a request-response protocol, which provides Layer 2 transport mechanism between a wireless client and a server in the network prior to authentication. It helps in determining a wireless network infrastructure before associating clients, and allows clients to send queries to multiple 802.11 networks in parallel.

gateway

Gateway is a network node that allows traffic to flow in and out of the network.

Gbps

Gigabits per second.

GBps

Gigabytes per second.

GET

GET refers HTTP request method or an SNMP operation method. The GET HTTP request method submits data to be processed to a specified resource. The GET SNMP operation method obtains information from the Management Information Base (MIB).

GHz

Gigahertz.

GMT

Greenwich Mean Time. GMT refers to the mean solar time at the Royal Observatory in Greenwich, London. GMT is the same as Coordinated Universal Time (UTC) standard, written as an offset of UTC +/- 00:00.

goodput

Goodput is the application level throughput that refers to the ratio of the total bytes transmitted or received in the network to the total air time required for transmitting or receiving the bytes.

GPS

Global Positioning System. A satellite-based global navigation system.

GRE

Generic Routing Encapsulation. GRE is an IP encapsulation protocol that is used to transport packets over a network.

GTC

Generic Token Card. GTC is a protocol that can be used as an alternative to MSCHAPv2 protocol. GTC allows authentication to various authentication databases even in cases where MSCHAPv2 is not supported by the database.

GVRP

GARP VLAN Registration Protocol or Generic VLAN Registration Protocol. GARP is an IEEE 802.1Q-compliant protocol that facilitates VLAN registration and controls VLANs within a larger network.

H2QP

Hotspot 2.0 Query Protocol.

hot zone

Wireless access area created by multiple hotspots that are located in close proximity to one another. Hot zones usually combine public safety APs with public hotspots.

hotspot

Hotspot refers to a WLAN node that provides Internet connection and virtual private network (VPN) access from a given location. A business traveler, for example, with a laptop equipped for Wi-Fi can look up a local hotspot, contact it, and get connected through its network to reach the Internet.

HSPA

High-Speed Packet Access.

ΗТ

High Throughput. IEEE 802.11n is an HT WLAN standard that aims to achieve physical data rates of close to 600 Mbps on the 2.4 GHz and 5 GHz bands.

HTTP

Hypertext Transfer Protocol. The HTTP is an application protocol to transfer data over the web. The HTTP protocol defines how messages are formatted and transmitted, and the actions that the w servers and browsers should take in response to various commands.

HTTPS

Hypertext Transfer Protocol Secure. HTTPS is a variant of the HTTP that adds a layer of security on the data in transit through a secure socket layer or transport layer security protocol connection.

IAS

Internet Authentication Service. IAS is a component of Windows Server operating systems that provides centralized user authentication, authorization, and accounting.

ICMP

Internet Control Message Protocol. ICMP is an error reporting protocol. It is used by network devices such as routers, to send error messages and operational information to the source IP address when network problems prevent delivery of IP packets.

IDS

Intrusion Detection System. IDS monitors a network or systems for malicious activity or policy violations and reports its findings to the management system deployed in the network.

IEEE

Institute of Electrical and Electronics Engineers.

IGMP

Internet Group Management Protocol. Communications protocol used by hosts and adjacent routers on IP networks to establish multicast group memberships.

IGMP snooping

IGMP snooping prevents multicast flooding on Layer 2 network by treating multicast traffic as broadcast traffic. Without IGMP snooping, all streams could be flooded to all ports on that VLAN. When multicast flooding occurs, end-hosts that happen to be in the same VLAN would receive all the streams only to be discarded without snooping.

IGP

Interior Gateway Protocol. IGP is used for exchanging routing information between gateways within an autonomous system (for example, a system of corporate local area networks).

IGRP

Interior Gateway Routing Protocol. IGRP is a distance vector interior routing protocol used by routers to exchange routing data within an autonomous system.

IKE

Internet Key Exchange. IKE is a key management protocol used with IPsec protocol to establish a secure communication channel. IKE provides additional feature, flexibility, and ease of configuration for IPsec standard.

IKEv1

Internet Key Exchange version 1. IKEv1 establishes a secure authenticated communication channel by using either the pre-shared key (shared secret), digital signatures, or public key encryption. IKEv1 operates in Main and Aggressive modes. See RFC 2409.

IKEv2

Internet Key Exchange version 2. IKEv2 uses the secure channel established in Phase 1 to negotiate Security Associations on behalf of services such as IPsec. IKEv2 uses pre-shared key and Digital Signature for authentication. See RFC 4306.

ΙοΤ

Internet of Things. IoT refers to the internetworking of devices that are embedded with electronics, software, sensors, and network connectivity features allowing data exchange over the Internet.

IPM

Intelligent Power Monitoring. IPM is a feature supported on certain APs that actively measures the power utilization of an AP and dynamically adapts to the power resources.

IPS

Intrusion Prevention System. The IPS monitors a network for malicious activities such as security threats or policy violations. The main function of an IPS is to identify suspicious activity, log the information, attempt to block the activity, and report it.

IPsec

Internet Protocol security. IPsec is a protocol suite for secure IP communications that authenticates and encrypts each IP packet in a communication session.

IPSG

Internet Protocol Source Guard. IPSG restricts IP address from untrusted interface by filtering traffic based on list of addresses in the DHCP binding database or manually configured IP source bindings. It prevents IP spoofing attacks.

IrDA

An industry-sponsored organization set up in 1993 to create international standards for the hardware and software used in infrared communication links. In this special form of radio transmission, a focused ray of light in the infrared frequency spectrum, measured in terahertz (THz), or trillions of hertz (cycles per second), is modulated with information and sent from a transmitter to a receiver over a relatively short distance.

ISAKMP

Internet Security Association and Key Management Protocol. ISAKMP is used for establishing Security Associations and cryptographic keys in an Internet environment.

ISP

Internet Service Provider. An ISP is an organization that provides services for accessing and using the Internet.

JSON

JavaScript Object Notation. JSON is an open-standard, language-independent, lightweight data-interchange format used to transmit data objects consisting of attribute-value pairs. JSON uses a "self-describing" text format that is easy for humans to read and write, and that can be used as a data format by any programming language.

Kbps

Kilobits per second.

KBps

Kilobytes per second.

keepalive

Signal sent at periodic intervals from one device to another to verify that the link between the two devices is working. If no reply is received, data will be sent by a different path until the link is restored. A keepalive can also be used to indicate that the connection should be preserved so that the receiving device does not consider it timed out and drop it.

L2TP

Layer-2 Tunneling Protocol. L2TP is a networking protocol used by the ISPs to enable VPN operations.

LACP

Link Aggregation Control Protocol. LACP is used for the collective handling of multiple physical ports that can be seen as a single channel for network traffic purposes.

LAG

Link Aggregation Group . A LAG combines a number of physical ports together to make a single high-bandwidth data path. LAGs can connect two switches to provide a higher-bandwidth connection to a public network.

LAN

Local Area Network. A LAN is a network of connected devices within a distinct geographic area such as an office or a commercial establishment and share a common communications line or wireless link to a server.

LCD

Liquid Crystal Display. LCD is the technology used for displays in notebook and other smaller computers. Like LED and gas-plasma technologies, LCDs allow displays to be much thinner than the cathode ray tube technology.

LDAP

Lightweight Directory Access Protocol. LDAP is a communication protocol that provides the ability to access and maintain distributed directory information services over a network.

LDPC

Low-Density Parity-Check. LDPC is a method of transmitting a message over a noisy transmission channel using a linear error correcting code. An LDPC is constructed using a sparse bipartite graph.

LEAP

Lightweight Extensible Authentication Protocol. LEAP is a Cisco proprietary version of EAP used in wireless networks and Point-to-Point connections.

LED

Light Emitting Diode. LED is a semiconductor light source that emits light when an electric current passes through it.

LEEF

Log Event Extended Format. LEEF is a type of customizable syslog event format. An extended log file contains a sequence of lines containing ASCII characters terminated by either the sequence LF or CRLF.

LI

Lawful Interception. LI refers to the procedure of obtaining communications network data by the Law Enforcement Agencies for the purpose of analysis or evidence.

LLDP

Link Layer Discovery Protocol. LLDP is a vendor-neutral link layer protocol in the Internet Protocol suite used by network devices for advertising their identity, capabilities, and neighbors on an IEEE 802 local area network, which is principally a wired Ethernet.

LLDP-MED

LLDP-Media Endpoint Discovery. LLDP-MED facilitates information sharing between endpoints and network infrastructure devices.

LMS

Local Management Switch. In multi-controller networks, each controller acts as an LMS and terminates user traffic from the APs, processes, and forwards the traffic to the wired network.

LNS

L2TP Network Server. LNS is an equipment that connects to a carrier and handles the sessions from broadband lines. It is also used for dial-up and mobile links. LNS handles authentication and routing of the IP addresses. It also handles the negotiation of the link with the equipment and establishes a session.

LTE

Long Term Evolution. LTE is a 4G wireless communication standard that provides high-speed wireless communication for mobile phones and data terminals. See 4G.

MAB

MAC Authentication Bypass. Endpoints such as network printers, Ethernet-based sensors, cameras, and wireless phones do not support 802.1X authentication. For such endpoints, MAC Authentication Bypass mechanism is used. In this method, the MAC address of the endpoint is used to authenticate the endpoint.

MAC

Media Access Control. A MAC address is a unique identifier assigned to network interfaces for communications on a network.

MAM

Mobile Application Management. MAM refers to software and services used to secure, manage, and distribute mobile applications used in enterprise settings on mobile devices like smartphones and tablet computers. Mobile Application Management can apply to company-owned mobile devices as well as BYOD.

Mbps

Megabits per second

MBps

Megabytes per second

MCS

Modulation and Coding Scheme. MCS is used as a parameter to determine the data rate of a wireless connection for high throughput.

MD4

Message Digest 4. MD4 is an earlier version of MD5 and is an algorithm used to verify data integrity through the creation of a 128-bit message digest from data input.

MD5

Message Digest 5. The MD5 algorithm is a widely used hash function producing a 128-bit hash value from the data input.

MDAC

Microsoft Data Access Components. MDAC is a framework of interrelated Microsoft technologies that provides a standard database for Windows OS.

MDM

Mobile Device Management. MDM is an administrative software to manage, monitor, and secure mobile devices of the employees in a network.

mDNS

Multicast Domain Name System. mDNS provides the ability to perform DNS-like operations on the local link in the absence of any conventional unicast DNS server. The mDNS protocol uses IP multicast User Datagram Protocol (UDP) packets, and is implemented by the Apple Bonjour and Linux NSS-mDNS services. mDNS works in conjunction with DNS Service Discovery (DNS-SD), a companion zero-configuration technique specified. See RFC 6763.

MFA

Multi-factor Authentication. MFA lets you require multiple factors, or proofs of identity, when authenticating a user. Policy configurations define how often multi-factor authentication will be required, or conditions that will trigger it.

MHz

Megahertz

MIB

Management Information Base. A hierarchical database used by SNMP to manage the devices being monitored.

microwave

Electromagnetic energy with a frequency higher than 1 GHz, corresponding to wavelength shorter than 30 centimeters.

ΜΙΜΟ

Multiple Input Multiple Output. An antenna technology for wireless communications in which multiple antennas are used at both source (transmitter) and destination (receiver). The antennas at each end of the communications circuit are combined to minimize errors and optimize data speed.

MISO

Multiple Input Single Output. An antenna technology for wireless communications in which multiple antennas are used at the source (transmitter). The antennas are combined to minimize errors and optimize data speed. The destination (receiver) has only one antenna.

MLD

Multicast Listener Discovery. A component of the IPv6 suite. It is used by IPv6 routers for discovering multicast listeners on a directly attached link.

MPDU

MAC Protocol Data Unit. MPDU is a message exchanged between MAC entities in a communication system based on the layered OSI model.

MPLS

Multiprotocol Label Switching. The MPLS protocol speeds up and shapes network traffic flows.

MPPE

Microsoft Point-to-Point Encryption. A method of encrypting data transferred across PPP-based dial-up connections or PPTP-based VPN connections.

MS-CHAP

Microsoft Challenge Handshake Authentication Protocol. MS-CHAP is Password-based, challenge-response, mutual authentication protocol that uses MD4 and DES encryption.

MS-CHAPv1

Microsoft Challenge Handshake Authentication Protocol version 1. MS-CHAPv1 extends the user authentication functionality provided on Windows networks to remote workstations. MS-CHAPv1 supports only one-way authentication.

MS-CHAPv2

Microsoft Challenge Handshake Authentication Protocol version 2. MS-CHAPv2 is an enhanced version of the MS-CHAP protocol that supports mutual authentication.

MSS

Maximum Segment Size. MSS is a parameter of the options field in the TCP header that specifies the largest amount of data, specified in bytes, that a computer or communications device can receive in a single TCP segment.

MSSID

Mesh Service Set Identifier. MSSID is the SSID used by the client to access a wireless mesh network.

MSTP

Multiple Spanning Tree Protocol. MSTP configures a separate Spanning Tree for each VLAN group and blocks all but one of the possible alternate paths within each spanning tree.

MTU

Maximum Transmission Unit. MTU is the largest size packet or frame specified in octets (eight-bit bytes) that can be sent in networks such as the Internet.

MU-MIMO

Multi-User Multiple-Input Multiple-Output. MU-MIMO is a set of multiple-input and multiple-output technologies for wireless communication, in which users or wireless terminals with one or more antennas communicate with each other.

MVRP

Multiple VLAN Registration Protocol. MVRP is a Layer 2 network protocol used for automatic configuration of VLAN information on switches.

mW

milliWatts. mW is 1/1000 of a Watt. It is a linear measurement (always positive) that is generally used to represent transmission.

NAC

Network Access Control. NAC is a computer networking solution that uses a set of protocols to define and implement a policy that describes how devices can secure access to network nodes when they initially attempt to connect to a network.

NAD

Network Access Device. NAD is a device that automatically connects the user to the preferred network, for example, an AP or an Ethernet switch.

NAK

Negative Acknowledgement. NAK is a response indicating that a transmitted message was received with errors or it was corrupted, or that the receiving end is not ready to accept transmissions.

NAP

Network Access Protection. The NAP feature in the Windows Server allows network administrators to define specific levels of network access based on identity, groups, and policy compliance. The NAP Agent is a service that collects and manages health information for NAP client computers. If a client is not compliant, NAP provides a mechanism to automatically bring the client back into compliance and then dynamically increase its level of network access.

NAS

Network Access Server. NAS provides network access to users, such as a wireless AP, network switch, or dial-in terminal server.

NAT

Network Address Translation. NAT is a method of remapping one IP address space into another by modifying network address information in Internet Protocol (IP) datagram packet headers while they are in transit across a traffic routing device.

NetBIOS

Network Basic Input/Output System. A program that lets applications on different computers communicate within a LAN.

netmask

Netmask is a 32-bit mask used for segregating IP address into subnets. Netmask defines the class and range of IP addresses.

NFC

Near-Field Communication. NFC is a short-range wireless connectivity standard (ECMA-340, ISO/IEC 18092) that uses magnetic field induction to enable communication between devices when they touch or are brought closer (within a few centimeters of distance). The standard specifies a way for the devices to establish a peer-to-peer (P2P) network to exchange data.

NIC

Network Interface Card. NIC is a hardware component that allows a device to connect to the network.

Nmap

Network Mapper. Nmap is an open-source utility for network discovery and security auditing. Nmap uses IP packets to determine such things as the hosts available on a network and their services, operating systems and versions, types of packet filters/firewalls, and so on.

NMI

Non-Maskable Interrupt. NMI is a hardware interrupt that standard interrupt-masking techniques in the system cannot ignore. It typically occurs to signal attention for non-recoverable hardware errors.

NMS

Network Management System. NMS is a set of hardware and/or software tools that allow an IT professional to supervise the individual components of a network within a larger network management framework.

NOE

New Office Environment. NOE is a proprietary VoIP protocol designed by Alcatel-Lucent Enterprise.

NTP

Network Time Protocol. NTP is a protocol for synchronizing the clocks of computers over a network.

OAuth

Open Standard for Authorization. OAuth is a token-based authorization standard that allows websites or third-party applications to access user information, without exposing the user credentials.

OCSP

Online Certificate Status Protocol. OCSP is used for determining the current status of a digital certificate without requiring a CRL.

OFDM

Orthogonal Frequency Division Multiplexing. OFDM is a scheme for encoding digital data on multiple carrier frequencies.

OID

Object Identifier. An OID is an identifier used to name an object. The OIDs represent nodes or managed objects in a MIB hierarchy. The OIDs are designated by text strings and integer sequences and are formally defined as per the ASN.1 standard.

ОКС

Opportunistic Key Caching. OKC is a technique available for authentication between multiple APs in a network where those APs are under common administrative control. Using OKC, a station roaming to any AP in the network will not have to complete a full authentication exchange, but will instead just perform the 4-way handshake to establish transient encryption keys.

onboarding

The process of preparing a device for use on an enterprise network, by creating the appropriate access credentials and setting up the network connection parameters.

OpenFlow

OpenFlow is an open communications interface between control plane and the forwarding layers of a network.

OpenFlow agent

OpenFlow agent. OpenFlow is a software module in Software-Defined Networking (SDN) that allows the abstraction of any legacy network element, so that it can be integrated and managed by the SDN controller. OpenFlow runs on network devices such as switches, routers, wireless controllers, and APs.

Optical wireless

Optical wireless is combined use of conventional radio frequency wireless and optical fiber for telecommunication. Long-range links are provided by using optical fibers; the links from the long-range endpoints to end users are accomplished by RF wireless or laser systems. RF wireless at Ultra High Frequencies and microwave frequencies can carry broadband signals to individual computers at substantial data speeds.

OSI

Open Systems Interconnection. OSI is a reference model that defines a framework for communication between the applications in a network.

OSPF

Open Shortest Path First. OSPF is a link-state routing protocol for IP networks. It uses a link-state routing algorithm and falls into the group of interior routing protocols that operates within a single Autonomous System (AS).

OSPFv2

Open Shortest Path First version 2. OSPFv2 is the version 2 of the link-state routing protocol, OSPF. See RFC 2328.

OUI

Organizationally Unique Identifier. Synonymous with company ID or vendor ID, an OUI is a 24-bit, globally unique assigned number, referenced by various standards. The first half of a MAC address is OUI.

OVA

Open Virtualization Archive. OVA contains a compressed installable version of a virtual machine.

OVF

Open Virtualization Format. OVF is a specification that describes an open-standard, secure, efficient, portable and extensible format for packaging and distributing software for virtual machines.

PAC

Protected Access Credential. PAC is distributed to clients for optimized network authentication. These credentials are used for establishing an authentication tunnel between the client and the authentication server.

PAP

Password Authentication Protocol. PAP validates users by password. PAP does not encrypt passwords for transmission and is thus considered insecure.

PAPI

Process Application Programming Interface. PAPI controls channels for ARM and Wireless Intrusion Detection System (WIDS) communication to the master controller. A separate PAPI control channel connects to the local controller where the SSID tunnels terminate.

PBR

Policy-based Routing. PBR provides a flexible mechanism for forwarding data packets based on polices configured by a network administrator.

PDU

Power Distribution Unit or Protocol Data Unit. Power Distribution Unit is a device that distributes electric power to the networking equipment located within a data center. Protocol Data Unit contains protocol control Information that is delivered as a unit among peer entities of a network.

PEAP

Protected Extensible Authentication Protocol. PEAP is a type of EAP communication that addresses security issues associated with clear text EAP transmissions by creating a secure channel encrypted and protected by TLS.

PEF

Policy Enforcement Firewall. PEF also known as PEFNG provides context-based controls to enforce application-layer security and prioritization. The customers using Aruba mobility controllers can avail PEF features and services by obtaining a PEF license. PEF for VPN users—Customers with PEF for VPN license can apply firewall policies to the user traffic routed to a controller through a VPN tunnel.

PEFNG

Policy Enforcement Firewall. PEF also known as PEFNG provides context-based controls to enforce application-layer security and prioritization. The customers using Aruba mobility controllers can avail PEF features and services by obtaining a PEF license. PEF for VPN users—Customers with PEF for VPN license can apply firewall policies to the user traffic routed to a controller through a VPN tunnel.

PEFV

Policy Enforcement Firewall. PEF also known as PEFNG provides context-based controls to enforce application-layer security and prioritization. The customers using Aruba mobility controllers can avail PEF features and services by obtaining a PEF license. PEF for VPN users—Customers with PEF for VPN license can apply firewall policies to the user traffic routed to a controller through a VPN tunnel.

PFS

Perfect Forward Secrecy. PFS refers to the condition in which a current session key or long-term private key does not compromise the past or subsequent keys.

PHB

Per-hop behavior. PHB is a term used in DS or MPLS. It defines the policy and priority applied to a packet when traversing a hop (such as a router) in a DiffServ network.

PIM

Protocol-Independent Multicast. PIM refers to a family of multicast routing protocols for IP networks that provide one-to-many and many-to-many distribution of data over a LAN, WAN, or the Internet.

ΡΙΝ

Personal Identification Number. PIN is a numeric password used to authenticate a user to a system.

PKCS#n

Public-key cryptography standard n. PKCS#n refers to a numbered standard related to topics in cryptography, including private keys (PKCS#1), digital certificates (PKCS#7), certificate signing requests (PKCS#10), and secure storage of keys and certificates (PKCS#12).

ΡΚΙ

Public Key Infrastructure. PKI is a security technology based on digital certificates and the assurances provided by strong cryptography. See also certificate authority, digital certificate, public key, private key.

PLMN

Public Land Mobile Network. PLMS is a network established and operated by an administration or by a Recognized Operating Agency for the specific purpose of providing land mobile telecommunications services to the public.

РМК

Pairwise Master Key. PMK is a shared secret key that is generated after PSK or 802.1X authentication.

ΡοΕ

Power over Ethernet. PoE is a technology for wired Ethernet LANs to carry electric power required for the device in the data cables. The IEEE 802.3af PoE standard provides up to 15.4 W of power on each port.

PoE+

Power over Ethernet+. PoE+ is an IEEE 802.3at standard that provides 25.5W power on each port.

POST

Power On Self Test. An HTTP request method that requests data from a specified resource.

PPP

Point-to-Point Protocol. PPP is a data link (layer 2) protocol used to establish a direct connection between two nodes. It can provide connection authentication, transmission encryption, and compression.

ΡΡΡοΕ

Point-to-Point Protocol over Ethernet. PPPoE is a method of connecting to the Internet, typically used with DSL services, where the client connects to the DSL modem.

PPTP

Point-to-Point Tunneling Protocol. PPTP is a method for implementing virtual private networks. It uses a control channel over TCP and a GRE tunnel operating to encapsulate PPP packets.

private key

The part of a public-private key pair that is always kept private. The private key encrypts the signature of a message to authenticate the sender. The private key also decrypts a message that was encrypted with the public key of the sender.

PRNG

Pseudo-Random Number Generator. PRNG is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers.

PSK

Pre-shared key. A unique shared secret that was previously shared between two parties by using a secure channel. This is used with WPA security, which requires the owner of a network to provide a passphrase to users for network access.

PSU

Power Supply Unit. PSU is a unit that supplies power to an equipment by converting mains AC to low-voltage regulated DC power.

public key

The part of a public-private key pair that is made public. The public key encrypts a message and the message is decrypted with the private key of the recipient.

PVST

Per-VLAN Spanning Tree. PVST provides load balancing of VLANs across multiple ports resulting in optimal usage of network resources.

PVST+

Per-VLAN Spanning Tree+. PVST+ is an extension of the PVST standard that uses the 802.1Q trunking technology.

QoS

Quality of Service. It refers to the capability of a network to provide better service and performance to a specific network traffic over various technologies.

RA

Router Advertisement. The RA messages are sent by the routers in the network when the hosts send multicast router solicitation to the multicast address of all routers.

Radar

Radio Detection and Ranging. Radar is an object-detection system that uses radio waves to determine the range, angle, or velocity of objects.

RADIUS

Remote Authentication Dial-In User Service. An Industry-standard network access protocol for remote authentication. It allows authentication, authorization, and accounting of remote users who want to access network resources.

RAM

Random Access Memory.

RAPIDS

Rogue Access Point identification and Detection System. An AMP module that is designed to identify and locate wireless threats by making use of all of the information available from your existing infrastructure.

RARP

Reverse Address Resolution Protocol. RARP is a protocol used by a physical machine in a local area network for determining the IP address from the ARP table or cache of the gateway server.

Regex

Regular Expression. Regex refers to a sequence of symbols and characters defining a search pattern.

Registration Authority

Type of Certificate Authority that processes certificate requests. The Registration Authority verifies that requests are valid and comply with certificate policy, and authenticates the user's identity. The Registration Authority then forwards the request to the Certificate Authority to sign and issue the certificate.

Remote AP

Remote APs extend corporate network to the users working from home or at temporary work sites. Remote APs are deplyed at branch office sites and are connected to the central network on a WAN link.

REST

Representational State Transfer. REST is a simple and stateless architecture that the web services use for providing interoperability between computer systems on the Internet. In a RESTful web service, requests made to the URI of a resource will elicit a response that may be in XML, HTML, JSON or some other defined format.

RF

Radio Frequency. RF refers to the electromagnetic wave frequencies within a range of 3 kHz to 300 GHz, including the frequencies used for communications or Radar signals.

RFC

Request For Comments. RFC is a commonly used format for the Internet standards documentss.

RFID

Radio Frequency Identification. RFID uses radio waves to automatically identify and track the information stored on a tag attached to an object.

RIP

Routing Information Protocol. RIP prevents the routing loops by limiting the number of hops allowed in a path from source to destination.

RJ45

Registered Jack 45. RJ45 is a physical connector for network cables.

RMA

Return Merchandise Authorization. RMA is a part of the product returning process that authorizes users to return a product to the manufacturer or distributor for a refund, replacement, or repair. The customers who want to return a product within its Warranty period contact the manufacturer to initiate the product returning process. The manufacturer or the seller generates an authorization number for the RMA, which is used by the customers, when returning a product to the warehouse.

RMON

Remote Monitoring. RMON provides standard information that a network administrator can use to monitor, analyze, and troubleshoot a group of distributed LANs.

RoW

Rest of World. RoW or RW is an operating country code of a device.

RSA

Rivest, Shamir, Adleman. RSA is a cryptosystem for public-key encryption, and is widely used for securing sensitive data, particularly when being sent over an insecure network such as the Internet.

RSSI

Received Signal Strength Indicator. RSSI is a mechanism by which RF energy is measured by the circuitry on a wireless NIC (0-255). The RSSI is not standard across vendors. Each vendor determines its own RSSI scale/values.

RSTP

Rapid Spanning Tree Protocol. RSTP provides significantly faster spanning tree convergence after a topology change, introducing new convergence behaviors and bridge port roles to do this.

RTCP

RTP Control Protocol. RTCP provides out-of-band statistics and control information for an Real-Time Transport Protocol session.

RTLS

Real-Time Location Systems. RTLS automatically identifies and tracks the location of objects or people in real time, usually within a building or other contained area.

RTP

Real-Time Transport Protocol. RTP is a network protocol used for delivering audio and video over IP networks.

RTS

Request to Send. RTS refers to the data transmission and protection mechanism used by the 802.11 wireless networking protocol to prevent frame collision occurrences. See CTS.

RTSP

Real Time Streaming Protocol. RTSP is a network control protocol designed for use in entertainment and communications systems to control streaming media servers.

RVI

Routed VLAN Interface. RVI is a switch interface that forwards packets between VLANs.

RW

Rest of World. RoW or RW is an operating country code of a device.

SA

Security Association. SA is the establishment of shared security attributes between two network entities to support secure communication.

SAML

Security Assertion Markup Language. SAML is an XML-based framework for communicating user authentication, entitlement, and attribute information. SAML enables single sign-on by allowing users to authenticate at an identity provider and then access service providers without additional authentication.

SCEP

Simple Certificate Enrollment Protocol. SCEP is a protocol for requesting and managing digital certificates.

SCP

Secure Copy Protocol. SCP is a network protocol that supports file transfers between hosts on a network.

SCSI

Small Computer System Interface. SCSI refers to a set of interface standards for physical connection and data transfer between a computer and the peripheral devices such as printers, disk drives, CD-ROM, and so on.

SDN

Software-Defined Networking. SDN is an umbrella term encompassing several kinds of network technology aimed at making the network as agile and flexible as the virtualized server and storage infrastructure of the modern data center.

SDR

Server Derivation Rule. An SDR refers to a role assignment model used by the controllers running ArubaOS to assign roles and VLANs to the WLAN users based on the rules defined under a server group. The SDRs override the default authentication roles and VLANs defined in the AAA and Virtual AP profiles.

SDU

Service Data Unit. SDU is a unit of data that has been passed down from an OSI layer to a lower layer and that has not yet been encapsulated into a PDU by the lower layer.

SD-WAN

Software-Defined Wide Area Network. SD-WAN is an application for applying SDN technology to WAN connections that connect enterprise networks across disparate geographical locations.

SFP

The Small Form-factor Pluggable. SFP is a compact, hot-pluggable transceiver that is used for both telecommunication and data communications applications.

SFP+

Small Form-factor Pluggable+. SFP+ supports up to data rates up to 16 Gbps.

SFTP

Secure File Transfer Protocol. SFTP is a network protocol that allows file access, file transfer, and file management functions over a secure connection.

SHA

Secure Hash Algorithm. SHA is a family of cryptographic hash functions. The SHA algorithm includes the SHA, SHA-1, SHA-2 and SHA-3 variants.

SIM

Subscriber Identity Module. SIM is an integrated circuit that is intended to securely store the International Mobile Subscriber Identity (IMSI) number and its related key, which are used for identifying and authenticating subscribers on mobile telephony devices.

SIP

Session Initiation Protocol. SIP is used for signaling and controlling multimedia communication session such as voice and video calls.

SIRT

Security Incident Response Team. SIRT is responsible for reviewing as well as responding to computer security incident reports and activity.

SKU

Stock Keeping Unit. SKU refers to the product and service identification code for the products in the inventory.

SLAAC

Stateless Address Autoconfiguration. SLAAC provides the ability to address a host based on a network prefix that is advertised from a local network router through router advertisements.

SMB

Server Message Block or Small and Medium Business. Server Message Block operates as an application-layer network protocol mainly used for providing shared access to files, printers, serial ports, and for miscellaneous communications between the nodes on a network.

SMS

Short Message Service. SMS refers to short text messages (up to 140 characters) sent and received through mobile phones.

SMTP

Simple Mail Transfer Protocol. SMTP is an Internet standard protocol for electronic mail transmission.

SNIR

Signal-to-Noise-Plus-Interference Ratio. SNIR refers to the power of a central signal of interest divided by the sum of the interference power and the power of the background noise. SINR is defined as the power of a certain signal of interest divided by the sum of the interference power (from all the other interfering signals) and the power of some background noise.

SNMP

Simple Network Management Protocol. SNMP is a TCP/IP standard protocol for managing devices on IP networks. Devices that typically support SNMP include routers, switches, servers, workstations, printers, modem racks, and more. It is used mostly in network management systems to monitor network-attached devices for conditions that warrant administrative attention.

SNMPv1

Simple Network Management Protocol version 1. SNMPv1 is a widely used network management protocol.

SNMPv2

Simple Network Management Protocol version 2. SNMPv2 is an enhanced version of SNMPv1, which includes improvements in the areas of performance, security, confidentiality, and manager-to-manager communications.

SNMPv2c

Community-Based Simple Network Management Protocol version 2. SNMPv2C uses the community-based security scheme of SNMPv1 and does not include the SNMPv2 security model.

SNMPv3

Simple Network Management Protocol version 3. SNMPv3 is an enhanced version of SNMP that includes security and remote configuration features.

SNR

Signal-to-Noise Ratio. SNR is used for comparing the level of a desired signal with the level of background noise.

SNTP

Simple Network Time Protocol. SNTP is a less complex implementation of NTP. It uses the same , but does not require the storage of state over extended periods of time.

SOAP

Simple Object Access Protocol. SOAP enables communication between the applications running on different operating systems, with different technologies and programming languages. SOAP is an XML-based messaging protocol for exchanging structured information between the systems that support web services.

SoC

System on a Chip. SoC is an Integrated Circuit that integrates all components of a computer or other electronic system into a single chip.

source NAT

Source NAT changes the source address of the packets passing through the router. Source NAT is typically used when an internal (private) host initiates a session to an external (public) host.

SSH

Secure Shell. SSH is a network protocol that provides secure access to a remote device.

SSID

Service Set Identifier. SSID is a name given to a WLAN and is used by the client to access a WLAN network.

SSL

Secure Sockets Layer. SSL is a computer networking protocol for securing connections between network application clients and servers over the Internet.

SSO

Single Sign-On. SSO is an access-control property that allows the users to log in once to access multiple related, but independent applications or systems to which they have privileges. The process authenticates the user across all allowed resources during their session, eliminating additional login prompts.

STBC

Space-Time Block Coding. STBC is a technique used in wireless communications to transmit multiple copies of a data stream across a number of antennas and to exploit the various received versions of the data to improve the reliability of data transfer.

STM

Station Management. STM is a process that handles AP management and user association.

STP

Spanning Tree Protocol. STP is a network protocol that builds a logical loop-free topology for Ethernet networks.

subnet

Subnet is the logical division of an IP network.

subscription

A business model where a customer pays a certain amount as subscription price to obtain access to a product or service.

SU-MIMO

Single-User Multiple-Input Multiple-Output. SU-MIMO allocates the full bandwidth of the AP to a single high-speed device during the allotted time slice.

SVP

SpectraLink Voice Priority. SVP is an open, straightforward QoS approach that has been adopted by most leading vendors of WLAN APs. SVP favors isochronous voice packets over asynchronous data packets when contending for the wireless medium and when transmitting packets onto the wired LAN.

SWAN

Structured Wireless-Aware Network. A technology that incorporates a Wireless Local Area Network (WLAN) into a wired Wide Area Network (WAN). SWAN technology can enable an existing wired network to serve hundreds of users, organizations, corporations, or agencies over a large geographic area. SWAN is said to be scalable, secure, and reliable.

TAC

Technical Assistance Center.

TACACS

Terminal Access Controller Access Control System. TACACS is a family of protocols that handles remote authentication and related services for network access control through a centralized server.

TACACS+

Terminal Access Controller Access Control System+. TACACS+ provides separate authentication, authorization, and accounting services. It is derived from, but not backward compatible with, TACACS.

ТСР

Transmission Control Protocol. TCP is a communication protocol that defines the standards for establishing and maintaining network connection for applications to exchange data.

TCP/IP

Transmission Control Protocol/ Internet Protocol. TCP/IP is the basic communication language or protocol of the Internet.

TFTP

Trivial File Transfer Protocol. The TFTP is a software utility for transferring files from or to a remote host.

ΤΙΜ

Traffic Indication Map. TIM is an information element that advertises if any associated stations have buffered unicast frames. APs periodically send the TIM within a beacon to identify the stations that are using power saving mode and the stations that have undelivered data buffered on the AP.

TKIP

Temporal Key Integrity Protocol. A part of the WPA encryption standard for wireless networks. TKIP is the next-generation Wired Equivalent Privacy (WEP) that provides per-packet key mixing to address the flaws encountered in the WEP standard.

TLS

Transport Layer Security. TLS is a cryptographic protocol that provides communication security over the Internet. TLS encrypts the segments of network connections above the Transport Layer by using asymmetric cryptography for key exchange, symmetric encryption for privacy, and message authentication codes for message integrity.

TLV

Type-length-value or Tag-Length-Value. TLV is an encoding format. It refers to the type of data being processed, the length of the value, and the value for the type of data being processed.

ToS

Type of Service. The ToS field is part of the IPv4 header, which specifies datagrams priority and requests a route for low-delay, high-throughput, or a highly reliable service.

TPC

Transmit Power Control. TPC is a part of the 802.11h amendment. It is used to regulate the power levels used by 802.11a radio cards.

трм

Trusted Platform Module. TPM is an international standard for a secure cryptoprocessor, which is a dedicated microcontroller designed to secure hardware by integrating cryptographic keys into devices.

TSF

Timing Synchronization Function. TSF is a WLAN function that is used for synchronizing the timers for all the stations in a BSS.

TSPEC

Traffic Specification. TSPEC allows an 802.11e client or a QoS-capable wireless client to signal its traffic requirements to the AP.

TSV

Tab-Separated Values. TSV is a file format that allows the exchange of tabular data between applications that use different internal data formats.

TTL

Time to Live. TTL or hop limit is a mechanism that sets limits for data expiry in a computer or network.

TTY

TeleTypeWriter. TTY-enabled devices allow telephones to transmit text communications for people who are deaf or hard of hearing as well as transmit voice communication.

ТХОР

Transmission Opportunity. TXOP is used in wireless networks supporting the IEEE 802.11e Quality of Service (QoS) standard. Used in both EDCA and HCF Controlled Channel Access modes of operation, TXOP is a bounded time interval in which stations supporting QoS are permitted to transfer a series of frames. TXOP is defined by a start time and a maximum duration.

UAM

Universal Access Method. UAM allows subscribers to access a wireless network after they successfully log in from a web browser.

U-APSD

Unscheduled Automatic Power Save Delivery. U-APSD is a part of 802.11e and helps considerably in increasing the battery life of VoWLAN terminals.

UCC

Unified Communications and Collaboration. UCC is a term used to describe the integration of various communications methods with collaboration tools such as virtual whiteboards, real-time audio and video conferencing, and enhanced call control capabilities.

UDID

Unique Device Identifier. UDID is used to identify an iOS device.

UDP

User Datagram Protocol. UDP is a part of the TCP/IP family of protocols used for data transfer. UDP is typically used for streaming media. UDP is a stateless protocol, which means it does not acknowledge that the packets being sent have been received.

UDR

User Derivation Rule. UDR is a role assignment model used by the controllers running ArubaOS to assign roles and VLANs to the WLAN users based on MAC address, BSSID, DHCP-Option, encryption type, SSID, and the location of a user. For example, for an SSID with captive portal in the initial role, a UDR can be configured for scanners to provide a role based on their MAC OUI.

UHF

Ultra high frequency. UHF refers to radio frequencies between the range of 300 MHz and 3 GHz. UHF is also known as the decimeter band as the wavelengths range from one meter to one decimeter.

UI

User Interface.

UMTS

Universal Mobile Telecommunication System. UMTS is a third generation mobile cellular system for networks. See 3G.

UPnP

Universal Plug and Play. UPnp is a set of networking protocols that permits networked devices, such as personal computers, printers, Internet gateways, Wi-Fi APs, and mobile devices to seamlessly discover each other's presence on the network and establish functional network services for data sharing, communications, and entertainment.

URI

Uniform Resource Identifier. URI identifies the name and the location of a resource in a uniform format.

URL

Uniform Resource Locator. URL is a global address used for locating web resources on the Internet.

USB

Universal Serial Bus. USB is a connection standard that offers a common interface for communication between the external devices and a computer. USB is the most common port used in the client devices.

UTC

Coordinated Universal Time. UTC is the primary time standard by which the world regulates clocks and time.

UWB

Ultra-Wideband. UWB is a wireless technology for transmitting large amounts of digital data over a wide spectrum of frequency bands with very low power for a short distance.

VA

Virtual Appliance. VA is a pre-configured virtual machine image, ready to run on a hypervisor.

VBR

Virtual Beacon Report. VBR displays a report with the MAC address details and RSSI information of an AP.

VHT

Very High Throughput. IEEE 802.11ac is an emerging VHT WLAN standard that could achieve physical data rates of close to 7 Gbps for the 5 GHz band.

VIA

Virtual Intranet Access. VIA provides secure remote network connectivity for Android, Apple iOS, Mac OS X, and Windows mobile devices and laptops. It automatically scans and selects the best secure connection to the corporate network.

VLAN

Virtual Local Area Network. In computer networking, a single Layer 2 network may be partitioned to create multiple distinct broadcast domains, which are mutually isolated so that packets can only pass between them through one or more routers; such a domain is referred to as a Virtual Local Area Network, Virtual LAN, or VLAN.

VM

Virtual Machine. A VM is an emulation of a computer system. VMs are based on computer architectures and provide functionality of a physical computer.

VolP

Voice over IP. VoIP allows transmission of voice and multimedia content over an IP network.

VoWLAN

Voice over WLAN. VoWLAN is a method of routing telephone calls for mobile users over the Internet using the technology specified in IEEE 802.11b. Routing mobile calls over the Internet makes them free, or at least much less expensive than they would be otherwise.

VPN

Virtual Private Network. VPN enables secure access to a corporate network when located remotely. It enables a computer to send and receive data across shared or public networks as if it were directly connected to the private network, while benefiting from the functionality, security, and management policies of the private network. This is done by establishing a virtual point-to-point connection through the use of dedicated connections, encryption, or a combination of the two.

VRD

Validated Reference Design. VRDs are guides that capture the best practices for a particular technology in field.

VRF

VisualRF. VRF is an AirWave Management Platform (AMP) module that provides a real-time, network-wide views of your entire Radio Frequency environment along with floor plan editing capabilities. VRF also includes overlays on client health to help diagnose issues related to clients, floor plan, or a specific location.

VRF Plan

VisualRF Plan. A stand-alone Windows client used for basic planning procedures such as adding a floor plan, provisioning APs, and generating a Bill of Materials report.

VRRP

Virtual Router Redundancy Protocol. VRRP is an election protocol that dynamically assigns responsibility for a virtual router to one of the VRRP routers on a LAN.

VSA

Vendor-Specific Attribute. VSA is a method for communicating vendor-specific information between NASs and RADIUS servers.

VTP

VLAN Trunking Protocol. VTP is a Cisco proprietary protocol for propagating VLANs on a LAN.

walled garden

Walled garden is a feature that allows blocking of unauthorized users from accessing network resources.

WAN

Wide Area Network. WAN is a telecommunications network or computer network that extends over a large geographical distance.

WASP

Wireless Application Service Provider. WASP provides a web-based access to applications and services that would otherwise have to be stored locally and makes it possible for customers to access the service from a variety of wireless devices, such as a smartphone or Personal Digital Assistant (PDA).

WAX

Wireless abstract XML. WAX is an abstract markup language and a set of tools that is designed to help wireless application development as well as portability. Its tags perform at a higher level of abstraction than that of other wireless markup languages such as HTML, HDML, WML, XSL, and more.

W-CDMA

Wideband Code-Division Multiple Access. W-CDMA is a third-generation (3G) mobile wireless technology that promises much higher data speeds to mobile and portable wireless devices.

web service

Web services allow businesses to share and process data programmatically. Developers who want to provide integrated applications can use the API to programmatically perform actions that would otherwise require manual operation of the user interface.

WEP

Wired Equivalent Privacy. WEP is a security protocol that is specified in 802.11b and is designed to provide a WLAN with a level of security and privacy comparable to what is usually expected of a wired LAN.

WFA

Wi-Fi Alliance. WFA is a non-profit organization that promotes Wi-Fi technology and certifies Wi-Fi products if they conform to certain standards of interoperability.

WIDS

Wireless Intrusion Detection System. WIDS is an application that detects the attacks on a wireless network or wireless system.

Wi-Fi

Wi-Fi is a technology that allows electronic devices to connect to a WLAN network, mainly using the 2.4 GHz and 5 GHz radio bands. Wi-Fi can apply to products that use any 802.11 standard.

WiMAX

Worldwide Interoperability for Microwave Access. WiMAX refers to the implementation of IEEE 802.16 family of wireless networks standards set by the WiMAX forum.

WIP

Wireless Intrusion Protection. The WIP module provides wired and wireless AP detection, classification, and containment. It detects Denial of Service (DoS) and impersonation attacks, and prevents client and network intrusions.

WIPS

Wireless Intrusion Prevention System. WIPS is a dedicated security device or integrated software application that monitors the radio spectrum of WLAN network for rogue APs and other wireless threats.

WISP

Wireless Internet Service Provider. WISP allows subscribers to connect to a server at designated hotspots using a wireless connection such as Wi-Fi. This type of ISP offers broadband service and allows subscriber computers called stations, to access the Internet and the web from anywhere within the zone of coverage provided by the server antenna, usually a region with a radius of several kilometers.

WISPr

Wireless Internet Service Provider Roaming. The WISPr framework enables the client devices to roam between the wireless hotspots using different ISPs.

WLAN

Wireless Local Area Network. WLAN is a 802.11 standards-based LAN that the users access through a wireless connection.

WME

Wireless Multimedia Extension. WME is a Wi-Fi Alliance interoperability certification, based on the IEEE 802.11e standard. It provides basic QoS features to IEEE 802.11 networks. WMM prioritizes traffic according to four ACs: voice (AC_VO), video (AC_VI), best effort (AC_BE) and background (AC_BK). See WMM.

WMI

Windows Management Instrumentation. WMI consists of a set of extensions to the Windows Driver Model that provides an operating system interface through which instrumented components provide information and notification.

WMM

Wi-Fi Multimedia. WMM is also known as WME. It refers to a Wi-Fi Alliance interoperability certification, based on the IEEE 802.11e standard. It provides basic QoS features to IEEE 802.11 networks. WMM prioritizes traffic according to four ACs: voice (AC_VO), video (AC_VI), best effort (AC_BE), and background (AC_BK).

WPA

Wi-Fi Protected Access. WPA is an interoperable wireless security specification subset of the IEEE 802.11 standard. This standard provides authentication capabilities and uses TKIP for data encryption.

WPA2

Wi-Fi Protected Access 2. WPA2 is a certification program maintained by IEEE that oversees standards for security over wireless networks. WPA2 supports IEEE 802.1X/EAP authentication or PSK technology, but includes advanced encryption mechanism using CCMP that is referred to as AES.

WSDL

Web Service Description Language. WSDL is an XML-based interface definition language used to describe the functionality provided by a web service.

WSP

Wireless Service Provider. The service provider company that offers transmission services to users of wireless devices through Radio Frequency (RF) signals rather than through end-to-end wire communication.

www

World Wide Web.

X.509

X.509 is a standard for a public key infrastructure for managing digital certificates and public-key encryption. It is an essential part of the Transport Layer Security protocol used to secure web and email communication.

XAuth

Extended Authentication. XAuth provides a mechanism for requesting individual authentication information from the user, and a local user database or an external authentication server. It provides a method for storing the authentication information centrally in the local network.

XML

Extensible Markup Language. XML is a markup language that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable.

XML-RPC

XML Remote Procedure Call. XML-RPC is a protocol that uses XML to encode its calls and HTTP as a transport mechanism. Developers who want to provide integrated applications can use the API to programmatically perform actions that would otherwise require manual operation of the user interface.

ZTP

Zero Touch Provisioning. ZTP is a device provisioning mechanism that allows automatic and quick provisioning of devices with a minimal or at times no manual intervention.